

THE EFFECTIVENESS OF VEGETATED FLOATING MATS IN SEQUESTERING NUTRIENTS IN A STRUCTURALLY CONTROLLED WATERBODY

Prepared for

LEE COUNTY DEPARTMENT OF NATURAL RESOURCES 1500 MONROE STREET FORT MYERS, FLORIDA 33901 TELEPHONE (239) 533-8109

Prepared by

Professional Service Industries, Inc. 5801 Benjamin Center Drive, Suite 112 Tampa, Florida 33634 Telephone (813) 886-1075

PSI PROJECT NO. 0552189

June 17, 2010

Un

Jeffery E. Medcalf Regional Scientist

Michael W. Rothenburg, PE Department Manager, Environmental Services

TABLE OF CONTENTS

EXECL	JTIVE SUMMARY	vi
1.0	STUDY BACKGROUND	1
2.0	MATERIALS AND METHODS	4
2.1	Plant Materials	4
2.2	Floating Mat Installation	5
2.3	Water Quality Monitoring	8
2.4	Vegetation Sampling and Analysis	8
	Baseline Sampling Event	8
	Growing Season Sampling Events	10
3.0	RESULTS	11
3.1	Water Quality	11
3.2	Vegetation Cover on Sample Mats	12
3.3	Biomass and Nutrient Storage on Sample Mats	16
	Baseline Event	16
	Sample Mats Biomass Production	28
3.4	Percent Nitrogen and Total Nitrogen Storage in Sample Mat Roots and Shoots	33
	Percent Nitrogen in Sample Mat Roots and Shoots	33
	Nitrogen Storage on Sample Mats	33
3.5	Percent Phosphorous and Total Phosphorous Storage in Sample Mat Roots and Shoots	40
	Percent Phosphorous in Sample Mat Roots and Shoots	40
	Phosphorous Storage on Sample Mats	43
4.0	ANALYSIS OF RESULTS	48
4.1	Normalized Biomass Production and Storage of Nitrogen and Phosphorous on a per	
	Plant Basis	48
	Normalized Biomass Production	48
	Normalized Nitrogen and Phosphorous Storage	53
4.2	Estimated Biomass Production and Nitrogen and Phosphorous Storage on Existing Mats	63
4.3	Management Considerations	79
4.4	Additional Considerations	86
5.0	CONCLUSIONS	88
6.0	LIST OF REFERENCES	91

TABLES

Table 1:	The Quantity the Nursery Grown Plant Species Installed on each of the Sample Mats and Existing Mats	5
Table 2:	Mulloch Creek Impoundment Water Quality Parameters and Associated Laboratory Testing Methods	8
Table 3:	Sampling Dates for Baseline and Sample Mat Sampling Events	10
Table 4:	Insitu Water Quality Measurements at the Mulloch Creek Impoundment	11
Table 5:	Water Quality Sampling Results	13
Table 6:	Visual Estimate of the Percent Cover of the Planted and Recruited Species on Sample Mats during Sample Events 1, 2 and 3	14
Table 7:	Total Root Biomass and Percent Phosphorous, Nitrogen and Potassium of Nursery Grown Plant Species (N=10 of each species)	16
Table 8:	Total Shoot Biomass and Percent Phosphorous, Nitrogen and Potassium of Nursery Grown Plant Species (N=10 of each species)	16

Table 9:	Average Total Phosphorous, Nitrogen and Potassium (gm dwb) in Nursery Grown Plant Roots on a Per Plant Basis	18
Table 10:	Average Total Phosphorous, Nitrogen and Potassium (gm dwb) in Nursery Grown Plant Shoots on a Per Plant Basis	19
Table 11:	Average Total Phosphorous, Nitrogen and Potassium (gm dwb) in Nursery Grown Plant Roots and Shoots on a Per Plant Basis	20
Table 12:	Estimated Total Nitrogen, Phosphorous and Potassium in Roots (gm dwb) Planted on Each Sample Mat	22
Table 13:	Estimated Total Nitrogen, Phosphorous and Potassium in Shoots (gm dwb) Planted on Each Sample Mat	23
Table 14:	Estimated Total Nitrogen, Phosphorous and Potassium in Roots and Shoots (gm dwb) Planted on Each Sample Mat	24
Table 15:	Estimated Total Nitrogen, Phosphorous and Potassium in Roots (gm dwb) Planted on Each Existing Mat	25
Table 16:	Estimated Total Nitrogen, Phosphorous and Potassium in Shoots (gm dwb) Planted on Each Existing Mat	26
	Planted on Each Existing Mat	27
Table 18:	Root and Shoot Biomass (gm dwb) Storage on Sample Mats	29
Table 19:	Root Biomass (gm dwb) Storage on Sample Mats	31
Table 20:	Shoot Biomass (gm dwb) Storage on Sample Mats	32
Table 21:	Percent Total Nitrogen (dwb) in Sample Mat Roots	34
Table 22:	Percent Total Nitrogen (dwb) in Sample Mat Shoots	35
Table 23:	Total Nitrogen (gm dwb) Storage in Sample Mat Roots and Shoots	36
Table 24:	Total Nitrogen (gm dwb) Storage in Sample Mat Roots	38
Table 25:	Total Nitrogen (gm dwb) Storage in Sample Mat Shoots	39
Table 26:	Percent Total Phosphorous (dwb) in Sample Mat Roots	41
Table 27:	Mean Percent Phosphorous (dwb) in Sample Mat Shoots	42
Table 28:	Total Phosphorous (gm dwb) Storage in Sample Mat Roots Plus Shoots	44
Table 29:	Total Phosphorous (gm dwb) Storage in Sample Mat Roots	45
Table 30:	Total Phosphorous (gm dwb) Storage in Sample Mat Shoots	47
Table 31:	Average Root Plus Shoot Biomass (gm dwb) Storage on a per Plant Basis	49
Table 32:	Average Root Biomass (gm dwb) Storage on a per Plant Basis	51
Table 33:	Average Shoot Biomass (gm dwb) Storage on a per Plant Basis	52
Table 34:	Sample Mat Total Nitrogen (gm dwb) Storage on a per Plant Basis (Roots plus Shoots)	54
Table 35:	Total Nitrogen (gm dwb) Storage in Sample Mat Roots on a per Plant Basis	55
Table 36:	Total Nitrogen (gm dwb) Storage in Sample Mat Shoots on a per Plant Basis	57
Table 37:	Total Phosphorous (gm dwb) Storage in Sample Mat Roots plus Shoots on a per Plant Basis	59
Table 38:	Total Phosphorous (gm dwb) Storage in Sample Mat Roots on a per Plant Basis	60
Table 39:	Phosphorous (gm dwb) Storage in Sample Mat Shoots on a per Plant Basis	62
Table 40:	Estimated Root Plus Shoot Biomass (gm dwb) Storage on Existing Mat	64
Table 41:	Estimated Storage of Root Biomass (gm dwb) on Existing Mat	65
Table 42:	Estimated Storage of Shoot Biomass (gm dwb) on Existing Mat	66
Table 43:	Estimated Total Nitrogen (gm dwb) Storage on Existing Mat Roots Plus Shoots	67
Table 44:	Estimated Total Nitrogen (gm dwb) Storage in Existing Mats Roots	68
Table 45:	Estimated Total Nitrogen (gm dwb) Storage in Existing Mat Shoots	69

Table 46	Estimated Total Phosphorous (gm dwb) Storage in Existing Mats Roots Plus Shoots	70
Table 47:	Estimated Total Phosphorous (gm dwb) Storage in Existing Mats Roots	71
Table 48:	Estimated Total Phosphorous (gm dwb) Storage in Existing Mats Shoots	72
Table 49:	Estimated Total Nitrogen (gm dwb) Storage in Existing Mat Roots Plus Shoots	
	(Mat x 3)	73
Table 50:	Estimated Total Nitrogen (gm dwb) Storage in Existing Mats Roots (Mat x 3)	74
Table 51:	Estimated Total Nitrogen (gm dwb) Storage in Existing Mat Shoots (Mat x 3)	75
Table 52:	Estimated Total Phosphorous (gm dwb) Storage in Existing Mats Roots Plus Shoots	
	(Mat x 3)	76
Table 53:	Estimated Total Phosphorous (gm dwb) Storage in Existing Mats Roots (Mat x 3)	77
Table 54:	Estimated Total Phosphorous (gm dwb) Storage in Existing Mats Shoots (Mat x 3)	78
Table 55:	Estimated Cost of Total Nitrogen Storage on Existing Mat	83
Table 56:	Estimated Cost of Total Phosphorous Storage on Existing Mat	83
Table 57:	Estimated Cost of Total Nitrogen Storage on Existing Mat with 50 percent Distribution	
	of the Species with Highest Nitrogen Storage	84
Table 58:	Estimated Cost of Total Phosphorous Storage on Existing Mat with 50 percent	
	Distribution of Species with Highest Phosphorous Storage	84
Table 59:	Estimated Cost of Total Nitrogen Storage on Existing Mat Maximized for Planted	
	Species Diversity	84
Table 60:	Estimated Cost of Total Phosphorous Storage on Existing Mat Maximized for	
	Planted Species Diversity	85

FIGURES

Figure 1:	Project Location Map	3
Figure 2:	Location of Paired Sample and Existing Mats	6
Figure 3:	Completed Sample Mat Placement in Mulloch Creek	7
Figure 4:	Completed Existing Mat Placement in Mulloch Creek	7
Figure 5:	Water Quality Sampling Location Map	9
Figure 6:	Planted and Recruited Species Cover on Sample Mat 1 (Sample Event 1)	14
Figure 7:	Planted and Recruited Species Cover on Sample Mat 2 (Sample Event 2)	15
Figure 8:	Planted and Recruited Species Cover on Sample Mat 3 (Sample Event 3)	15
Figure 9:	Average Total Phosphorous, Nitrogen and Potassium in Nursery Grown Plant	
-	Roots on a Per Plant Basis	18
Figure 10:	Average Total Phosphorous, Nitrogen and Potassium in Nursery Grown Plant	
-	Shoots on a Per Plant Basis	19
Figure 11:	Average Total Phosphorous, Nitrogen and Potassium in Nursery Grown Plant	
	Roots and Shoots on a Per Plant Basis	20
Figure 12:	Estimated Total Nitrogen, Phosphorous and Potassium in Roots Planted on	
-	Each Sample Mat	22
Figure 13:	Estimated Total Nitrogen, Phosphorous and Potassium in Shoots Planted on	
-	Each Sample Mat	23
Figure 14:	Estimated Total Nitrogen, Phosphorous and Potassium in Roots and Shoots	
-	Planted on Each Sample Mat	24
Figure 15:	Estimated Total Nitrogen, Phosphorous and Potassium in Roots Planted on	
-	Each Existing Mat	25

Figure 16:	Estimated Total Nitrogen, Phosphorous and Potassium in Shoots Planted on Each Existing Mat	26
Figure 17:	Estimated Total Nitrogen, Phosphorous and Potassium in Roots and Shoots	
E igura 40:	Planted on Each Existing Mat	21
Figure 18:	Root and Shoot Biomass Storage on Sample Mats	29
Figure 19:	Root Biomass Storage on Sample Mats	31
Figure 20:	Shoot Biomass Storage on Sample Mats	32
Figure 21:	Percent Total Nitrogen in Sample Mat Roots	34
Figure 22:	Tetel Nitrogen in Sample Mat Shoots	35
Figure 23:	Total Nitrogen Storage in Sample Mat Roots and Shoots	30
Figure 24:	Total Nitrogen Storage in Sample Mat Roots	38
Figure 25:	Total Nitrogen Storage in Sample Mat Shoots.	39
Figure 26:	Percent Total Phosphorous in Sample Mat Roots	41
Figure 27:	Mean Percent Phosphorous in Sample Mat Shoots	42
Figure 28:	Total Phosphorous Storage in Sample Mat Roots Plus Shoots	44
Figure 29:	Total Phosphorous Storage in Sample Mat Roots	45
Figure 30:	Total Phosphorous Storage in Sample Mat Shoots	47
Figure 31:	Average Root Plus Shoot Biomass Storage on a per Plant Basis	49
Figure 32:	Average Root Biomass Storage on a per Plant Basis	51
Figure 33:	Average Shoot Biomass Storage on a per Plant Basis	52
Figure 34:	Sample Mat Total Nitrogen Storage on a per Plant Basis (Roots and Shoots)	54
Figure 35:	Total Nitrogen Storage in Sample Mat Roots on a per Plant Basis	55
Figure 36:	Total Nitrogen Storage in Sample Mat Shoots on a per Plant Basis	57
Figure 37:	Total Phosphorous Storage in Sample Mat Roots and Shoots on a per Plant Basis	59
Figure 38:	Total Phosphorous Storage in Sample Mat Roots on a per Plant Basis	60
Figure 39:	Phosphorous Storage in Sample Mat Shoots on a per Plant Basis	62
Figure 40:	Estimated Root Plus Shoot Biomass Storage on Existing Mat	64
Figure 41:	Estimated Storage of Root Biomass on Existing Mat	65
Figure 42:	Estimated Storage of Shoot Biomass on Existing Mat	66
Figure 43:	Estimated Total Nitrogen Storage on Existing Mat Roots and Shoots	67
Figure 44:	Estimated Total Nitrogen Storage in Existing Mats Roots	68
Figure 45:	Estimated Total Nitrogen Storage in Existing Mat Shoots	69
Figure 46	Estimated Total Phosphorous Storage in Existing Mats Roots and Shoots	70
Figure 47:	Estimated Total Phosphorous Storage in Existing Mats Roots	/1
Figure 48:	Estimated Total Phosphorous Storage in Existing Mats Shoots	72
Figure 49:	Estimated Total Nitrogen Storage in Existing Mat Roots and Shoots (Mat x 3)	73
Figure 50:	Estimated Total Nitrogen Storage in Existing Mats Roots (Mat x 3)	74
Figure 51:	Estimated Total Nitrogen Storage in Existing Mat Shoots (Mat x 3)	75
Figure 52:	Estimated Total Phosphorous Storage in Existing Mats Roots and Shoots (Mat x 3)	76
Figure 53:	Estimated Total Phosphorous Storage in Existing Mats Roots (Mat x 3)	77
Figure 54:	Estimated Total Phosphorous Storage in Existing Mats Shoots (Mat x 3)	78
Figure 55:	Growing Period (May through October, 2009) Total (Root and Shoot) Biomass	
	Production and Nitrogen Storage on a per Plant Basis	80
Figure 56:	Growing Period (May through October) Total (Root and Shoot) Biomass	_
	Production and Phosphorous Storage on a per Plant Basis	81

APPENDICES

- Appendix A:
- Water Quality Laboratory Reports Roots and Shoots Tissue Analysis Laboratory Reports and Data Summary Sheets Baseline through Sample Event 3 Composite Results Appendix B:
- Appendix C:

EXECUTIVE SUMMARY

Lee County (County) installed three (3) floating plant mats comprised of closed-cell foam mat with suspended hydrophytic plant species on a structurally controlled portion of Mulloch Creek during the 2008 growing season. The purpose of using the floating mats (BeeMats) was to sequester nitrogen and phosphorous as accumulated plant biomass from the creek. At the end of the growing season the plant biomass (roots plus shoots) and the associated stored nutrients was harvested and disposed of at an upland location.

Because of the perceived success of the floating mats in hydroponically sequestering both nitrogen and phosphorous as a result of the apparent biomass accumulation on the mats, the County planned on replanting these mats for the 2009 growing season following the completion of the installation of a new water control structure on Mulloch Creek. During this growing season the County planned on quantifying the storage of both phosphorous and nitrogen from biomass accumulation on the mats.

The objective of this study was to document the effectiveness of the floating plant mats in sequestering nutrients from a structurally controlled portion of Mulloch Creek during a portion of a typical Lee County growing season (May through October, 2009). The design of this study included the installation of three 6-ft X 6-ft planted floating sample mats paired with the replanting of each of the 22-ft by 20-ft Existing mats. Baseline conditions were established and sampling for roots and shoots biomass was conducted during Sample Events 1, 2 and 3 where a single sample mat was pulled, roots and shoots weighed and triplicate samples analyzed for total nitrogen and phosphorous.

Water quality monitoring was also conducted on a monthly basis beginning in May 2009 through November 2009 to document the concentrations of both organic and inorganic forms of nitrogen and phosphorous at two (2) upgradient and one downgradient location. While these results did not display trends in nitrogen and phosphorous reduction from the upgradient to downgradient sample location, they did show that the water quality in the creek (nitrogen and phosphorous) were below the values that are typical of water quality values for Florida's lakes and streams. In addition the water quality monitoring showed that the inorganic fraction of the total nitrogen and orthophosphate that are the plant available forms of these nutrients occurred at relatively low levels particularly from a plant nutrient standpoint through the study period.

The storage of total nitrogen (roots and shoots) of both the planted and recruited species on the Sample Mat varied by the rate, amount, and location (i.e., roots or shoots) of the storage. The general trend of the total nitrogen storage for each species was an increase in nitrogen during the three growth periods with a notable exception of *Pontederia cordata* that showed a decline in total nitrogen during the final growth period (Sample Events 2 through 3). *Agrostis alba* stored the most total nitrogen during the growth period (May through October) analyzed followed by *Canna flaccida*, *Juncus effusus* and *Pontederia cordata* largely due to the increases in biomass.

The recruitment of measurable levels of nitrogen from *Ludwigia* spp. and Other Species began between the Sample Events 1 and 2 growth period. These recruitment species had a substantial contribution to the total nitrogen storage stored on the Sample Mats over the growth period analyzed.

Agrostis alba stored the highest levels of root nitrogen on the Sample Mats, followed by *Canna flaccida*, *Juncus effusus*, and *Pontederia cordata*. Nitrogen storage in the Sample Mat shoots was also highest, followed by *Juncus effusus* and *Canna flaccida*. *Pontederia cordata* shoots lost nitrogen during the growth period analyzed.

Total nitrogen storage (roots plus shoots) normalized to a per plant basis was highest in *Agrostis alba*, followed by *Canna flaccida*, *Juncus effusus*, and *Pontederia cordata*. The roots of *Canna flaccida* stored the most nitrogen on a per plant basis which was followed by *Agrostis alba*, soft rush and *Pontederia cordata*. Conversely the shoots of *Agrostis alba* on a per plant basis stored the highest levels of nitrogen, followed by *Juncus effusus* and *Canna flaccida*.

Based on the quantities of the nursery grown plant species installed and recruited on the Existing Mats and the associated total nitrogen storage on a per plant basis for these species, a total of 1,292 grams on a dry weight basis of nitrogen was stored on each Existing Mat. *Agrostis alba* accounted for the highest nitrogen storage (698.8 gm) followed by *Canna flaccida* (248.6 gm), *Juncus effusus* 173.1 gm, Ludwigia species (126.4 gm), *Pontederia cordata* (36.9 gm) and other recruitment species (9.2 gm).

The general trend of phosphorous storage in the roots plus shoots for each installed species was an increase in phosphorous during the three growth periods except for *Pontederia cordata* that showed a net loss during the Sample Event 2 and 3 (final growth period). Also contributing to Sample Mat nitrogen storage in the roots plus shoots over the growth period analyzed were the recruitment of *Ludwigia* spp. and Other Species.

The highest levels of phosphorous stored in Sample Mats roots occurred in *Agrostis* alba followed by *Canna flaccida* and *Juncus effusus*. *Pontederia cordata* roots did not store phosphorous on the Sample Mats. Phosphorous storage in the Sample Mat shoots was also highest in *Agrostis alba* followed by *Juncus effusus*. Both *Pontederia cordata* and *Canna flaccida* shoots did not store phosphorous during the growing season (May through October).

Total phosphorous storage (roots plus shoots) normalized to a per plant basis was highest in *Agrostis alba*, followed by *Canna flaccida*, *Juncus effusus*, Ludwigia spp. and Other Species. The roots of *Canna flaccida* stored the most phosphorous on a per plant basis which was followed by *Agrostis alba*, *Juncus effusus* and *Pontederia cordata*. Conversely, the shoots of *Agrostis alba* on a per plant basis stored the highest levels of phosphorous followed by *Juncus effusus*. Neither *Pontederia cordata* nor *Canna flaccida* shoots on a per plant basis stored phosphorous during the growing season.

Based on the quantities of the nursery grown plant species installed and recruited on the Existing Mats and the associated total phosphorous storage (roots plus shoots) on a per plant basis for these species, a total of 83.11 grams on a dry weight basis of phosphorous was stored on each Existing Mat. *Agrostis alba* accounted for the highest phosphorous storage (46.52 gm) followed by *Canna flaccida* (15.84 gm), *Juncus effusus* (11.27 gm), Ludwigia species (10.75 gm), and other recruitment species (0.52 gm).

The sampling data for total nitrogen and phosphorous storage (roots plus shoots) during the growth period analyzed (May through October) generally support that the harvest of the plant material from the Existing Mats should occur near the end of a typical Lee County growing season due to the overall increase of stored phosphorous and nitrogen from Sample Event to Sample Event. The exact timing of the fall harvest is likely to vary from year to year depending on local conditions (e.g., heavy frost or possible freezes) and other management decisions.

The sample data of shoot growth during the growth period analyzed do not support the harvesting a crop of shoots of any of the species installed on the Existing Mat for several reasons. Both *Agrostis alba* and *Juncus effusus* steadily increased in the amount of stored nitrogen and phosphorous in its shoots on a per plant basis during each of the three (3) growth periods measured. *Canna flaccida* shoots had successive increases in stored nitrogen and phosphorous between the Baseline through Sample Event 2 growth period and showed a slight decline between Sample Event 2 through 3 but not appreciable enough to warrant harvesting. *Pontederia cordata* shoots on a per plant basis show virtually no increase in stored nitrogen or phosphorous analyzed during the growth period analyzed.

Nearly all management decisions or practices strive to maximize the cost to benefit. In the case of this study, the cost was considered to be the unit cost of the installation of each of the nursery-grown plants (plant plus installation) versus the nitrogen and phosphorous stored on a per plant basis. Because the price per installed plant was the same for each of the species (\$0.60), the species that stored the most nitrogen and phosphorous on a per plant basis were obviously the most cost effective.

Based on the total nitrogen storage on a per plant basis and the cost of each plant (\$0.60 per plant installed), *Agrostis alba* cost \$0.39 per a gram of nitrogen stored on a dry weight basis, followed by *Canna flaccida* at \$0.48 per gram, *Juncus effusus* at \$1.80 per gram and *Pontederia cordata* at \$6.18 per gram (see **Table 55**). Phosphorous storage on a per gram basis among the species evaluated was most cost effective with *Agrostis alba* costing \$5.93 per gram followed by *Canna flaccida* at \$7.58 and *Juncus effusus* at \$27.68 per gram (see **Table 56**). Because *Pontederia cordata* did not store phosphorous, no costs were calculated.

Based on the cost of storage of either nitrogen or phosphorous on a per plant basis, altering the plant quantities to favor both *Agrostis alba* and *Canna flaccida* and to a lesser extent *Juncus effusus* can result in substantially greater amounts of nitrogen and phosphorous stored on the Existing Mats in a more cost effective manner.

While a substantial level of insight into the use of vegetated floating mats was gained by this study, further study with regards to providing recommendations for the implementation of vegetated floating mats for the sequestration of nutrients under a wide range of water quality conditions is needed.

1.0 STUDY BACKGROUND

During the 2008 growing season, Lee County (County) installed three (3) floating plant mats comprised of closed-cell foam mat with suspended hydrophytic plant species on a structurally controlled portion of Mulloch Creek. The purpose of using the floating mats (BeeMats) during the 2008 growing season was to sequester nitrogen and phosphorous as plant biomass from the creek. At the end of the growing season the plant biomass (roots and shoots) and the associated stored nutrients was harvested and disposed of at an upland location.

The vegetation composition of this structurally controlled section of Mulloch Creek is comprised of combinations of emergent and floating aquatic plant species including Nuphar luteum, *Pistia stratiotes, Panicum repens, Panicum hemitomon*, and *Cyperus* spp.

Combinations of Industrial and commercial landuses predominate the impounded portion of the Mulloch Creek watershed (i.e., east of the aforementioned weir structure located at U.S. Highway 41). To the west of U.S. Highway 41, Mullock Creek is free flowing to it confluence with Estero Bay. Landuse in this portion of Mullock Creek is comprised of residential and commercial development and conservation lands.

Because of the perceived success of the floating mats in hydroponically sequestering both nitrogen and phosphorous as a result of the apparent biomass accumulation on the mats, the County planned on replanting these mats for the 2009 growing season following the completion of the installation of a new water control structure on Mulloch Creek. During this growing season the County planned on quantifying the storage of both phosphorous and nitrogen from biomass accumulation on the mats.

The objective of this study is to document of the effectiveness of the floating plant mats in sequestering nutrients from a structurally controlled portion of Mulloch Creek (see **Figure 1**) for a portion of a typical Lee County growing season (May through October, 2009). The design of this study included the installation of three 6-ft X 6-ft planted floating sample mats (Sample Mats) paired with the replanting of each of the 22-ft by 20-ft existing mats (Existing Mats). Baseline conditions were established and sampling for roots and shoots biomass was conducted during three successive events (Sampling Events 1, 2, and 3) where a single Sample Mat was pulled, roots and shoots weighed and triplicate samples analyzed for total nitrogen and nitrogen. The data collected from the Sample Mats was normalized and used to estimate the phosphorous and nitrogen storage on the Existing Mats.

This report is presented in five sections including: 1) Study Background; 2) Materials and Methods; 3) Results; 4) Analysis of Results; and, 5) Conclusions. The Materials and Methods section describes materials and installation of the sample mats, water quality sampling method, and the procedures for plant tissue sampling and analysis. The results of the results water quality sampling and the biomass and nutrient storage on the

Sample Mats is presented in the third section. The fourth section presents analysis of the Sample Mat data including the normalization of root and shoot nutrient storage on a per individual plant basis; estimates of the amount of nutrient storage on the Existing Mats based on normalized nutrient storage on a per plant basis; discussion of the management implications for the future use of the floating plant mats as a best management practice and recommendations of future studies and analysis to further understand the most effective use of the mats for nutrient sequestration. The final section provides an overview of the study results along with recommendations for future deployment of the mats within the County.

Figure 1 - Project Location Map

REFERENCE: THE 2008 AERIAL PHOTOGRAPH WAS OBTAINED FROM LEE COUNTY (HTTP://LEEGIS.LEEGOV.COM/GISDATA.HTM). THE PRESENTED DATA IS FOR INFORMATIONAL PURPOSES ONLY. IT IS NOT MEANT FOR DESIGN, LEGAL, OR ANY OTHER USES. PSI, INC. ASSUMES NO RESPONSIBILITY FOR ANY DECISIONS MADE OR ANY ACTIONS TAKEN BY THE USER BASED UPON INFORMATION OBTAINED FROM THE ABOVE DATA.

2.0 MATERIALS AND METHODS

2.1 Plant Materials

Four plant species were selected for installation on both the Existing and Sample Mats. Each of these species was grown at Beeman's Nursery located in New Smyrna Beach, Florida. The four species selected for this study included Agrostis alba, Pontederia cordata, Juncus effusus and Canna flaccida. Each of these species is briefly described below.

Agrostis alba is a creeping perennial cool season grass, related to the bentgrasses. Although native to Europe, it occurs throughout the northern and western halves of the United States, and along the southern border of Canada. The stems are slender with narrow leaves, about 1/4 inch wide. The panicle is loose and pyramidal in shape; its reddish color gives the grass its common name of redtop. It grows in a variety of habitat types ranging from moist to relatively dry soils, along river banks and rolling hills. It is most abundant in well-drained medium to fine-textured soils and is somewhat tolerant to alkali soils, moderate levels of droughts, and long, wet periods.

Juncus effusus is a perennial wetland plant that occurs in freshwater wetlands on all continents. *Juncus effusus* normally grows in areas that are only periodically flooded but it also can withstand periods of drying out, and it can tolerate continued submergence in up to 3 inches of water. It grows in clumps, spreads vigorously via rhizomes, and prefers heavy, wet acidic soils in mild climates where it rarely freezes. The stems are typical near 3 feet in height, without nodes, cylindrical, smooth to slightly striated, and taper to a bristle. The flowers and fruits are borne in

compact clusters that appear to emerge laterally a few inches below the tip of the flowering stem.

Pontederia cordata is a herbaceous, aquatic perennial with a cluster of erect arrowhead-shaped leaves arising from a single basal clump. It most commonly grows up to 3 ft tall on fleshy petioles (leaf stems) in acidic, freshwater marshes ranging from Minnesota and Nova Scotia, southward to Texas and Florida, the West Indies and to Argentina. It spreads by creeping rhizomes (underground stems) just beneath the soil surface. Throughout late spring and summer, *Pontederia cordata*

produces showy spires of violet-blue flowers standing on stalks 2-3 feet in height.

Canna flaccida is an herbaceous perennial that grows up to 4 ft tall in freshwater marshes, savannas, and on the edges of ponds and lakes. It spreads in these habitats through rhizomes (underground stems). The natural range of *Canna flaccida* is the southeastern coastal plain from South Carolina to Florida and east to Texas. The leaves are upright and succulent with prominent longitudinal veins. The flowers are bright yellow and born on a terminal cluster. Canna flacida prefers moist and fertile soils.

2.2 Floating Mat Installation

The installation of three (3) 6-ft x 6-ft floating mats (Sample Mats) and the replanting of three (3) 20-ft x 22 ft insitu floating mats (Existing Mat) on an impounded portion of Mulloch Creek was conducted on May 14, 2009. Each of the Sample Mats were planted with the aforementioned nursery grown plant species in the quantities specified in **Table 1**. The planting of the Sample Mats cells followed a specific pattern that included *Agrostis alba* on the mat perimeter followed by *Pontederia cordata, Juncus effusus* and *Canna flaccida*) on the interior. The Sample Mats were floated and anchored into place at the locations specified in **Figure 2**.

Table 1: The Quantity the Nursery Grown Plant Species Installed on each of the Sample Mats and Existing Mats									
Common Name Conuc/Species Number of Mat Cells Planted									
Common Name	Genus/ Species	Sample Mat	Existing Mat						
Redtop	Agrostis alba	28	460						
Pickerelweed	Pontederia cordata	27	380						
Canna lily	Canna flaccida	10	200						
Softrush Juncus effusus 25 520									
Total = 90 1,560									

The three (3) Existing Mats were floated to a near shore location where the plant material detritus from the previous growing season was removed. These mats were then planted with the same nursery grown plant species as specified in **Table 1**. The planting of the Existing Mat followed the same pattern as the Sample Mat including Agrostis alba on the mat perimeter followed by *Pontederia cordata, Juncus effusus,* and *Canna flaccida* on the interior. The Existing Mats were individually floated and anchored into place adjacent to the each of the Sample Mats locations specified in **Figure 2**.

Figures 3 and **4** show the final placement of a Sample Mat and an Existing Mat shortly after their installation was completed.

Figure 2 - Location of Paired Sample and Existing Mats

REFERENCE: THE 2008 AERIAL PHOTOGRAPH WAS OBTAINED FROM LEE COUNTY (HTTP://LEEGIS.LEEGOV.COM/GISDATA.HTM). THE PRESENTED DATA IS FOR INFORMATIONAL PURPOSES ONLY. IT IS NOT MEANT FOR DESIGN, LEGAL, OR ANY OTHER USES. PSI, INC. ASSUMES NO RESPONSIBILITY FOR ANY DECISIONS MADE OR ANY ACTIONS TAKEN BY THE USER BASED UPON INFORMATION OBTAINED FROM THE ABOVE DATA.

Figure 3: Completed Sample Mat Placement in Mulloch Creek

Figure 4: Completed Existing Mat Placement in Mulloch Creek

2.3 Water Quality Monitoring

Water quality monitoring within in the Mulloch Creek Impoundment was conducted on a monthly basis at the two inflow points and at the downstream water level control structure beginning in April 2009 through November 2009 (see **Figure 5**). Samples were collected and submitted to Sun Laboratories, Inc. for chemical analysis. The chemical parameters and associated laboratory testing methods are presented in **Table 2**.

Table 2: Mulloch Creek Impoundment Water Quality Parameters and Associated Laboratory Testing Methods						
Parameter EPA Method						
Nitrate (NO ₃)	300.0					
Nitrogen Ammonia (NH ₃ , NH ₄)	350.2					
Total Kjeldahl Nitrogen	351.2					
Ortho-Phosphate	300.0					
Total Phosphorous	6010					

Field measurement of dissolved oxygen (DO), pH, and specific conductivity was conducted during the monthly collection of water quality samples. All monthly samples and measurements were collected and, as appropriate, submitted to Sun Laboratories, Inc. for analysis pursuant to applicable Florida Department of Environmental Protection Standard Operating Procedures and in accordance with the National Environmental Laboratory Accreditation Conference (NELAC) protocols.

2.4 Vegetation Sampling and Analysis

Baseline Sampling Event

A composite sample composed of ten (10) individuals of each of the nursery grown plant species installed on the Sample Mats and Existing Mats was collected on April 29, 2009 during the mat installation. The roots and shoots of each plant were separated and when necessary washed free of nursery growing media. A composite of the roots and shoots for each plant species was packaged and submitted to Thornton Laboratories, Incorporated (Thornton). Thornton measured the wet weight biomass of the roots and shoots of each composite sample and dried the tissue samples in an air circulating, humidity controlled oven at 68° C for up to 14 days. Following the oven drying, the composite root and shoot samples were again measured to determine the root and shoot biomass on a dry weight basis (dwb) for each plant species.

Figure 5 - Water Quality Sampling Location Map

The oven dried root and shoot samples for each species were ground to <80 sieve. Samples of the ground roots and shoots of each species were then analyzed by the laboratory for total nitrogen, total phosphorous and total potassium as a percentage of the oven-dried biomass. The data collected during the baseline sampling event provided the foundation for the determination of the sequestration of the accumulation of nitrogen and phosphorous by biomass accumulated on the sample mats.

Growing Season Sampling Events

The biomass and total nitrogen, phosphorus and potassium of the roots and shoots of the planted and recruited plant species occurring on the Samples Mats were analyzed during three separate sampling events. The dates of these sampling events along with the aforementioned baseline event are presented in **Table 3**.

Table 3: Sampling Dates for Baseline and SampleMat Sampling Events					
Sample Event	Sample Date				
Baseline	April 29, 2009				
Event 1	June 30, 2009				
Event 2	August 27, 2009				
Event 3	October 29, 2009				

During each sampling event, the roots and shoots of each plant species were individually collected from one (1) of the three (3) Sample Mats. The roots of each species were washed free of nursery growing media. The wet weight of the roots and shoots of the planted and recruited species were weighed with a digital scale in the field to the nearest 0.1 gram. The roots and shoots of each species were individually packaged and delivered to the laboratory. As a quality control measure, the wet weight of the roots and shoots of each plant species were re-weighed and the roots and shoots dried in an air circulating, humidity controlled oven at 68° C for 14 days. Following oven drying, the root and shoot of each species were again weighed and the root and shoot biomass on a dry weight basis (dwb) for each plant species were then determined.

The oven dried root and shoot samples for each species were ground to <80 sieve. Triplicate samples of the ground roots and shoots of each species were then analyzed for total nitrogen, total phosphorous and total potassium as a percentage of the ovendried biomass.

During each sampling event, the total cover and relative cover of planted and recruited species on the respective Sample Mat sampled were visually estimated. The mortality or loss of planted species was also determined on a per species basis for the specific Sample Mat sampled during each sample event.

3.0 RESULTS

3.1 Water Quality

Water quality in the Mulloch Creek Impoundment was analyzed on a monthly basis at two stormwater infall locations and near its discharge located downstream at a newly constructed water control structure. The insitu monthly measurements for temperature, pH, Specific Conductivity and Dissolved Oxygen are presented in **Table 4**.

Table 4: Insitu Water Quality Measurements at the Mulloch Creek Impoundment								
Sample Date	Sample Location	Temperature (C°)	рН	Specific Conductivity (S/cm)	Dissolved Oxygen (mg/L)			
	Infall 1	29.7	6.79	751	6.66			
4/30/2009	Infall 2	27.6	7.35	762	5.15			
	Weir Outfall	28.6	8.25	775	6.86			
	Infall 1	31.7	6.89	795	6.01			
5/12/2009	Infall 2	29.9	7.48	842	7.21			
	Weir Outfall	31.4	8.96	757	5.48			
	Infall 1	28.0	7.61	835	6.80			
6/30/2009	Infall 2	29.0	7.60	972	3.20			
	Weir Outfall	29.2	7.88	817	5.05			
	Infall 1	30.6	7.11	789	6.10			
7/30/2009	Infall 2	32.0	7.09	811	7.33			
	Weir Outfall	32.1	7.98	791	5.99			
	Infall 1	28.1	7.53	811	6.03			
8/31/2009	Infall 2	29.5	7.53	968	7.14			
	Weir Outfall	28.4	7.51	813	5.42			
	SW Infall 1	24.1	7.74	830	5.65			
10/20/2009	SW Infall 2	22.1	7.52	922	6.79			
	Weir Outfall	23.9	7.59	840	5.35			
	Infall 1	23.8	7.42	810	4.82			
11/16/2009	Infall 2	21.9	7.53	878	6.40			
	Weir Outfall	23.4	7.39	817	5.84			

Table 5 presents the analytical results of the water quality sampling conducted at the three sample locations at the Mulloch Creek Impoundment. The data show that total phosphorous and ortho-phosphate occur at levels lower than a value of 0.11 mg/L, which is typical of water quality values for Florida's lakes and streams¹. The highest levels of phosphorous were sampled at Infall-1 sample location on April 3, 2009 (0.043 mg/L), May 12, 2009 (0.067 mg/L), and October 20, 2009 (0.043 mg/L).

Both the inorganic and organic concentrations of nitrogen were sampled at the Mulloch Creek Impoundment are presented in **Table 5**. Total nitrogen in the impoundment ranged from a low of 0.167 mg/L at south weir outfall on April 30, 2009 to a high of 1.302 mg/L at the weir outfall on August 31, 2009. With the exception the aforementioned high value measured at weir outfall, all of the total nitrogen values measured were below the 1.2 mg/L that is typical of water quality values for Florida's lakes and streams.

Kjeldahl Nitrogen (organic nitrogen) accounted for the major portion of the total nitrogen sample during each monthly sampling event. The inorganic fraction (plant available nitrogen) of the total nitrogen that was sampled monthly at each sampling location was relatively low particularly from a plant nutrient standpoint.

The laboratory results of the water quality monitoring are presented in **Appendix A**.

3.2 Vegetation Cover on Sample Mats

Just prior to each of the Sample Mat Sampling Events (Sample Events 1, 2 and 3) a visual estimate of the percent cover of each of the species that were planted and over time recruited on the mats was conducted. **Table 6** presents the results of the estimation of the percent cover of the planted *Pontederia cordata*, Agrostis alba, *Juncus effusus* and *Canna flaccida* and the recruited *Ludwigia peruviana* and *Ludwigia octavalis (Ludwigia* spp.) and "other species" that were composed of cattails (*Typha* spp.), spikerush (*Elleocharis* spp.), bluestem (*Andropogon* spp.) and other unidentified dicot species.

Figures 6, 7 and 8 present the total cover of the installed and recruited plant species that occur on the Sample Mats just prior to plant biomass sampling.

¹ Friedemann, M. and J. Hand. 1992. *Typical water quality values for Florida's lakes, streams, and estuaries.* Standards and Monitoring Section, Bureau of Surface Water Management, Florida Dept. of Environmental Regulation.

Table 5: Water Quality Sampling Results ²								
Sample Date	Sample Location	Nitrate (mg/L)	Nitrogen Ammonia (mg/L)	Plant Available Nitrogen (mg/L)	Total Kjeldahl Nitrogen (mg/L)	Calculated Total Nitrogen (mg/L)	Ortho- phospate (mg/L)	Total Phosporous (mg/L)
	SW Infall 1	0.014,U	0.081	< 0.095	0.743	< 0.838	< 0.022, U	0.043, I
4/30/2009	SW Infall 2	0.014,U	0.354	<0.368	0.688	<1.056	< 0.022, U	0.028, 1
	SW Weir Outfall	0.06	0.052	0.112	0.055	0.167	< 0.022, U	< 0.015, U
	SW Infall 1	0.014, U	0.062	< 0.076	0.599	< 0.675	< 0.022, U	0.067
5/12/2009	SW Infall 2	0.014, U	0.086	< 0.100	0.742	< 0.842	< 0.022, U	0.037, I
	SW Weir Outfall	0.014, U	0.184	< 0.198	0.571	< 0.769	< 0.022, U	< 0.015, U
	SW Infall 1	0.21	0.056	0.266	0.454	0.720	< 0.022, U	< 0.015, U
6/30/2009	SW Infall 2	0.014, U	0.040	< 0.054	0.655	< 0.709	< 0.022, U	< 0.015, U
	SW Weir Outfall	0.24	0.072	0.312	0.381	0.693	< 0.022, U	< 0.015, U
	SW Infall 1	0.29	0.162	0.452	0.445	0.897	< 0.022, U	< 0.015, U
7/30/2009	SW Infall 2	0.12	0.042	0.162	0.587	0.749	< 0.022, U	< 0.015, U
	SW Weir Outfall	0.27	0.031	0.301	0.444	0.745	< 0.022, U	< 0.015, U
	SW Infall 1	0.28	0.130	0.410	0.646	1.056	< 0.022, U	0.043, I
8/31/2009	SW Infall 2	0.014, U	0.083, I	< 0.097	0.771	< 0.868	< 0.022, U	< 0.015, U
	SW Weir Outfall	0.21	0.485	0.695	0.607	1.302	< 0.022, U	0.019, I
	SW Infall 1	0.27	0.094	0.364	0.649	1.013	< 0.022, U	< 0.015, U
9/21/2009	SW Infall 2	0.014	0.092	0.106	0.798	0.904	< 0.022, U	< 0.015, U
	SW Weir Outfall	0.27	0.070	0.340	0.566	0.906	< 0.022, U	< 0.015, U
	SW Infall 1	0.33	0.042	0.372	0.660	1.032	< 0.022, U	0.034, I
10/20/2009	SW Infall 2	0.12	0.046	0.166	0.794	0.960	< 0.022, U	< 0.015, U
	SW Weir Outfall	0.26	0.006, I	0.266	0.705	0.971	< 0.022, U	< 0.015, U
	SW Infall 1	0.36	0.054	0.414	0.500	0.914	< 0.022, U	< 0.015, U
11/16/2009	SW Infall 2	0.15	0.079	0.229	0.781	1.010	< 0.022, U	< 0.015, U
	SW Weir Outfall	0.33	0.052	0.382	0.525	0.907	< 0.022, U	0.027, I

 2 I = The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit. U = The compound was analyzed for but not detected.

These results show an increase in total cover for *Juncus effusus*, *Agrostis alba* for each successive sampling event. *Canna flaccida* cover increased between Sample Events 1 and 2 but declined between Sample Events 2 and 3. *Pontederia cordata* cover remained unchanged between Sample Events 1 and 2 and declined between Sample Events 2 and 3. During Sample Event 1 the first recruitment species, *Ludwigia peruviana*, was observed (<1% cover). This species along with *Ludwigia octavalis* rapidly spread on Sample Mats 2 and 3. Other species increasingly recruited on the Sample Mats between the Sample Events 1 through 3 growth period (see **Table 6**).

Table 6: Visual Estimate of the Percent Cover of the Planted and Recruited Species on Sample Mats during Sample Events 1, 2 and 3						
Percent Cover						
Genus and Species	Sample	Sample	Sample			
	Event 1	Event 2	Event 3			
Agrostis alba	10	15	20			
Pontederia cordata	10	10	5			
Canna flaccida	5	10	5			
Juncus effusus	15	20	20			
Ludwigia spp.	<1	20	30			
Other Spp.		<1	<1			
Total =	>40	>65	>80			

Figure 6: Planted and Recruited Species Cover on Sample Mat 1 (Sample Event 1)

Figure 7: Planted and Recruited Species Cover on Sample Mat 2 (Sample Event 2)

Figure 8: Planted and Recruited Species Cover on Sample Mat 3 (Sample Event 3)

3.3 Biomass and Nutrient Storage on Sample Mats

Baseline Event

The baseline biomass and nutrient content (% dwb) of the roots and shoots of the nursery-grown plants sampled (N=10) prior to installation on the Sample Mats and Existing Mats are presented in **Tables 7** and **8**. Appendix **B** presents a summary of the laboratory results for the biomass (dwb) in each of the nursery grown plant species sampled (N = 10).

Total biomass of the sampled nursery grown plant materials was 90.8 grams composed of 54.9 grams of roots and 35.9 gm of shoots. The sampled baseline root biomass was highest for *Juncus effusus*, followed closely by *Canna flaccida*, and *Agrostis alba*. The *Pontederia cordata* root biomass was substantially less than the other sampled species. *Juncus effusus* also displayed the highest baseline shoot biomass followed by Agrostis alba, *Pontederia cordata* and *Canna flaccida* (see **Tables 7** and **8**).

Table 7: Total Root Biomass and Percent Moisture, Phosphorous, Nitrogen and Potassium of Nursery Grown Plant Species (N=10 of each species)							
Genus SpeciesDry Weight1 (gm)Moisture (%)Nitrogen (%)Phosphorous (%)Potassium (%)							
Agrostis alba	16.5	76.82	0.58	0.13	0.15		
Pontederia cordata	2.8	90.43	1.74	0.29	1.72		
Canna flaccida	16.9	87.53	0.53	0.20	1.41		
Juncus effusus	18.6	70.16	0.68	0.16	0.54		
Total = 54.9							

Table 8: Total Shoot Biomass and Percent Moisture, Phosphorous, Nitrogen and Potassium of Nursery Grown Plant Species (N=10 of each species)							
Genus SpeciesDry Weight (gm)Moisture (%)Nitrogen (%)Phosphorous (%)Potassium (%)							
Agrostis alba	9.5	57.69	0.74	0.24	0.66		
Pontederia cordata	8.8	90.18	3.16	0.48	5.29		
Canna flaccida	5.1	89.53	0.73	0.65	4.17		
Juncus effusus	12.5	58.29	0.78	0.17	0.84		
Total = 35.9							

¹ Note, the dry weight of the roots and shoots of each plant species installed on the Floating and Sample Mats was calculated based on the field-weighed (digital scales) wet weights and the Thornton % moisture content of each species.

The percentage of nitrogen, phosphorous and potassium (dwb) in the nursery grown plant species roots and shoots varied by plant species. The percentage of nitrogen was highest in the roots and the shoots of *Pontederia cordata*, followed by *Juncus effusus*, Agrostis alba and *Canna flaccida* (see **Tables 7** and **8**). Total percent phosphorous in the roots of the nursery grown plant species was highest in *Pontederia cordata* followed by *Canna flaccida*, *Juncus effusus* and Agrostis alba. The percentage of phosphorous in the shoots displayed a different pattern with *Canna flaccida* being the highest followed by *Pontederia cordata*, Agrostis alba and *Juncus effusus* (see **Tables 7** and **8**). The laboratory results of the percent nitrogen, phosphorous, and potassium in the biomass are presented in **Appendix B**.

While not the focus of this study, potassium was analyzed as a general macronutrient indicator of potential plant nutrient deficiencies. The percentage of potassium was highest in both the roots and shoots of *Pontederia cordata*, followed by *Canna flaccida*, *Juncus effusus*, and Agrostis alba (see **Tables 7** and **8**).

The average nutrient content of the roots and shoots of each plant on a per species basis was determined from the number of nursery-grown plants of each species sampled (N=10), the root and shoot biomass and the percentage of nutrients stored (% dwb). These results are presented in **Tables 9**, **10** and **11** and the associated (paired) **Figures 6**, **7** and **8**.

Because the number of plants of each species sampled was constant (N=10), the results of the nutrient content on a per plant basis for each species is the function of the interaction between biomass and percent nutrient content of that biomass. The nitrogen content in the roots of the nursery grown plant species prior to installation on a per plant basis was highest in *Juncus effusus* followed by Agrostis alba, *Canna flaccida* and *Pontederia cordata* (see **Table 9** and **Figure 9**). The nitrogen content in the shoots was highest in *Pontederia cordata* followed by *Juncus effusus*, Agrostis alba and *Canna flaccida* (see paired **Table 10** and **Figure 10**). The nitrogen content of the each plant (roots plus shoots) for each nursery grown species on a per plant basis was highest in *Pontederia cordata* followed by *Juncus effusus*, Agrostis alba and *Canna flaccida* (see **Table 10** and **Figure 10**). The nitrogen content of the each plant (roots plus shoots) for each nursery grown species on a per plant basis was highest in *Pontederia cordata* followed by *Juncus effusus*, Agrostis alba and *Canna flaccida* (see **Table 11** and **Figure 8**).

The phosphorous content in the roots of the nursery grown plant species prior to installation on a per plant basis was highest in *Juncus effusus* and *Canna flaccida* followed by Agrostis alba and *Pontederia cordata* (see **Table 9** and **Figure 9**). The phosphorous content in the shoots was highest in *Pontederia cordata* followed by *Canna flaccida* and *Juncus effusus* and Agrostis alba (see **Table 10** and **Figure 10**). The phosphorous content of the each plant (roots plus shoots) for each nursery grown species on a per plant basis was highest in *Canna flaccida* followed by *Juncus effusus* and *Agrostis alba* (see **Table 11** and **Figure 11**).

Table 9: Average Total Phosphorous, Nitrogen and Potassium (gm dwb) in Nursery Grown Plant Roots on a Per Plant Basis						
Genus Species Total Nitrogen Total Phosphorous Total Potassium						
Agrostis alba	0.010	0.002	0.002			
Pontederia cordata	0.005	0.001	0.005			
Canna <i>flaccida</i> 0.009 0.003 0.024						
Juncus effusus 0.013 0.003 0.010						

Table 10: Average Total Phosphorous, Nitrogen and Potassium in NurseryGrown Plant Shoots on a Per Plant Basis						
Genus Species Total Nitrogen Total Phosphorous Total Potassium						
Agrostis alba	0.007	0.002	0.006			
Pontederia cordata 0.028 0.004 0.047						
Canna <i>flaccida</i> 0.004 0.003 0.021						
Juncus effusus	0.010	0.002	0.011			

Table 11: Average Total Phosphorous, Nitrogen and Potassium (gm dwb) in Nursery Grown Plant Roots and Shoots on a Per Plant Basis						
Genus Species	Genus Species Total Nitrogen Total Phosphorous Total Potassium					
Agrostis alba	0.0166	0.0044	0.0088			
Pontederia cordata	0.0328	0.0051	0.0515			
Canna flaccida	0.0127	0.0067	0.0451			
Juncus effusus 0.0224 0.0051 0.0206						
Total 0.084 0.021 0.126						

The average total nitrogen and phosphorous on a per plant basis (roots and shoots) of the nursery grown species prior to installation was used to estimate the amount of these nutrients that were planted on both the Sample Mats and the Existing Mats. The calculated amount of both nitrogen and phosphorous in the installed plant (roots and shoots) on the Sample Mats and Existing Mats was dependent on the nutrient content of each individual species (roots and shoots) planted and the number of each species planted. The amount of both nitrogen and phosphorous planted on a per species basis on both the Sample Mats and Existing Mats was used as the foundation for the analysis of the cumulative storage of these nutrients during Sample Events 1, 2 and 3.

Tables 12, **13** and **14** and **Figures 12**, **13** and **14** present the results of the estimated nitrogen and phosphorous levels (gm dwb) in the roots and shoots and roots plus sheets of the species planted on each of the three (3) Samples Mats. **Tables 15**, **16** and **17** and **Figures 15**, **16** and **17** present the results of the estimated nitrogen and phosphorous roots (gm dwb) planted on each of the three (3) Existing Mats.

Table 12: Estimated Total Nitrogen, Phosphorous and Potassium in Roots (gm dwb) Planted on Each Sample Mat						
Genus Species # Cells Planted Total Nitrogen Total Phosphorous Total Potassium						
Agrostis alba	28	0.267	0.060	0.069		
Pontederia cordata	27	0.133	0.022	0.132		
Canna flaccida	10	0.090	0.034	0.239		
Juncus effusus	25	0.317	0.074	0.251		
Totals = 90 0.807 0.190 0.691						

Table 13: Estimated Total Nitrogen, Phosphorous and Potassium in Shoots (gm dwb) Plantedon Each Sample Mat							
Genus Species	Genus Species # Cells Planted Total Nitrogen Total Phosphorous Total Potassium						
Agrostis alba	28	0.197	0.064	0.176			
Pontederia cordata	27	0.752	0.114	1.260			
Canna flaccida	10	0.037	0.033	0.212			
Juncus effusus	25	0.244	0.053	0.263			
Totals = 90 1.231 0.264 1.910							

Table 14: Estimated Total Nitrogen, Phosphorous and Potassium in Roots and Shoots (gmdwb) Planted on Each Sample Mat							
Genus Species # Cells Planted Total Nitrogen Total Phosphorous Total Potassium							
Agrostis alba	28	0.465	0.124	0.245			
Pontederia cordata	27	0.885	0.136	1.391			
Canna flaccida	10	0.127	0.067	0.451			
Juncus effusus	25	0.561	0.128	0.514			
Totals =	Totals = 90 2.037 0.455 2.601						

Table 15: Estimated Total Nitrogen, Phosphorous and Potassium in Roots (gm dwb) Planted on Each Existing Mat						
Genus Species # Cells Planted Total Nitrogen Total Phosphorous Total Potassium						
Agrostis alba	460	4.39	0.98	1.14		
Pontederia cordata	380	1.87	0.31	1.85		
Canna flaccida	200	1.80	0.68	4.78		
Juncus effusus	520	6.58	1.55	5.23		
Totals = 1,560 14.64 3.52 12.99						

Table 16: Estimated Total Nitrogen, Phosphorous and Potassium in Shoots (gm dwb) Plantedon Each Existing Mat							
Genus Species	Genus Species # Cells Planted Total Nitrogen Total Phosphorous Total Potassium						
Agrostis alba	460	3.241	1.051	2.890			
Pontederia cordata	380	10.589	1.608	17.727			
Canna flaccida	200	0.741	0.660	4.235			
Juncus effusus	520	5.075	1.106	5.466			
Totals = 1,560 19.646 4.426 30.318							

Table 17: Estimated Total Nitrogen, Phosphorous and Potassium in Roots and Shoots(gm dwb) Planted on Each Existing Mat						
Genus Species # Cells Planted Total Nitrogen Total Phosphorous Total Potassiu						
Agrostis alba	460	7.631	2.035	4.026		
Pontederia cordata	380	12.462	1.921	19.578		
Canna flaccida	200	2.538	1.338	9.014		
Juncus effusus	520	11.659	2.655	10.694		
Totals = 1,560 34.291 7.949 43.312						

Sample Mats Biomass Production

This section presents cumulative storage of root and shoot biomass on Sample Mats during a portion of the 2009 growing season (May through October). The stored root and shoot biomass of each species (i.e., nursery grown and recruitment species) occurring on the Sample Mats was normalized to the average root and shoot biomass on a per plant basis for each of three (3) sample events. Normalizing the data allowed for measurement of net biomass production (i.e., increase in plant biomass above baseline conditions). This data was then used to estimate the root and shoot biomass that was stored on each of the three (3) Existing Mats during each sample event based on the numbers of nursery-grown plants installed.

The results of the measured biomass production of the roots and shoots of the nurserygrown plants installed on the Sample Mats displayed a net increase in root, shoot and total plant biomass production. A significant portion of the nursery grown plant materials total biomass production was supplemented by the recruitment of *Ludwigia peruviana* and *Ludwigia octavalis (Ludwigia* spp.) and other species including cattails (*Typha* spp.), spikerush (*Elleocharis* spp.), bluestem (*Andropogon* spp.) and other unidentified dicot species (Other Species). The laboratory results for root and shoot biomass production are presented in **Appendix B**.

The measured total biomass (gm dwb) production of the plant species installed on the Sample Mat increased at differential rates between each of sample growth periods (i.e., Sampling Events 1, 2 and 3) with the exception of *Pontederia cordata* which displayed a decline in biomass production between Sampling Events 2 and 3 (See **Table 18** and **Figure 18**). *Pontederia cordata* had the highest measured biomass production during the growth period between the Baseline and Sample Event 1 followed by *Juncus effusus*, *Agrostis alba* and *Canna flaccida*. Between Sample Events 1 and 2 the total biomass among the nursery grown plant species shifted slightly with *Pontederia cordata* displaying the highest biomass production followed by *Juncus effusus*, *Canna flaccida* and *Agrostis alba*. It was during this sampling period that the recruitment of *Ludwigia* spp. and Other Species biomass occur at measurable levels (See **Table 18** and **Figure 18**).

During the growth period between sample Events 2 and 3, the most significant shifts in biomass production occurred among both the planted and recruited species. The measured *Agrostis alba* biomass (root plus shoots) exceeded all of the combined planted and recruitment species on the Sample Mat during this growth period. *Juncus effusus* had the next highest measured total biomass followed by *Canna flaccida*, *Ludwigia* spp., *Pontederia cordata* and Other Species during this growth period (See **Table 18** and **Figure 18**).

Table 18: Root and Shoot Biomass (gm dwb) Storage on Sample Mats						
Genus/ Species	Event 1	Event 2	Event 3			
Agrostis alba	126.2	276.7	2,548.1			
Pontederia cordata	616.6	641.9	88.7			
Canna flaccida	40.7	365.4	552.7			
Juncus effusus	153.2	402.0	655.2			
Ludwigia spp.		99.4	451.1			
Other Spp.		11.6	32.2			
Total	936.7	1,797.0	4,328.0			

The measured root biomass production of the plant species installed on the Sample Mats increased at differential rates between each of the successive sampling events (i.e., Sampling Events 1, 2 and 3) with the exception of *Pontederia cordata* that displayed a substantial decline in root biomass between Sampling Events 2 and 3 (see **Table 19** and **Figure 19**). Measured root biomass on the Sample Mat was highest in *Pontederia cordata* followed by *Agrostis alba, Juncus effusus* and *Canna flaccida* during the growth period between the Baseline and Sample Event 1. *Pontederia cordata* continued to display the highest root biomass measured during Sample Event 2 followed by *Canna flaccida, Juncus effusus* and *Agrostis alba* (see **Table 19** and **Figure 19**).

The root biomass production was most significant during the growth period between Sample Events 2 and 3. The total measured root biomass of *Agrostis alba* exceeded the combined total of the root biomass of all other planted species on the Sample Mat. *Canna flaccida* produced the next highest root biomass followed by *Juncus effusus* and *Pontederia cordata* (see **Table 19** and **Figure 19**).

Shoot biomass production of the species installed on the Sample Mats also displayed differential rates of both biomass accumulation and decline between each growth period. *Pontederia cordata*'s shoot biomass production increased between the Baseline and Sample Event 1 growth period but declined between Sample Events 1 through 2 Sample Events 3 growth period (see **Table 20** and **Figure 20**). During the growth period between Sample Events 2 and 3, *Pontederia cordata* actually declined to a level lower than the Baseline Event indicating a net overall loss of biomass. This biomass loss was due to declining growth rates of shoots and a plant mortality rate of 32 percent. The biomass of *Canna flaccida* displayed a successive increase in shoot production between the Baseline and Sample Events 1 and 2 but a decline between Sample Events 2 and 3 (see **Table 20** and **Figure 20**). Both *Agrostis alba* and *Juncus effusus* had positive biomass production during each of these growth periods (see **Table 20** and **Figure 20**)

Between the Baseline and Event 1 growth period, *Juncus effusus* had the highest biomass production. *Pontederia cordata* had the second highest stored shoot biomass during this growth period followed by *Agrostis alba* and then *Canna flaccida*. *Juncus effusus* continued to display the highest measured and stored shoot biomass on the Sample Mat associated with Sample Event 2. *Agrostis alba* displayed the second highest stored shoot biomass during this sampling event followed by *Canna flaccida* and *Pontederia cordata* (see **Table 20** and **Figure 20**).

Similar to root biomass production, during the final growth period, shoot biomass of *Agrostis alba* exceeded the combined total of the root biomass of all other planted species. *Juncus effusus* display the next highest, followed by *Canna flaccida* (see **Table 20** and **Figure 20**).

Table 19: Root Biomass (gm dwb) Storage on Sample Mats								
Genus/ Species	Genus/ Species Event 1 Event 2 Event 3							
Agrostis alba	94.1	230.9	1,858.5					
Pontederia cordata	560.6	632.6	91.2					
Canna flaccida	27.1	331.7	538.9					
Juncus effusus	42.8	200.9	295.7					
Total = 724.6 1,396.1 2,784.3								

Table 20: Shoot Biomass (gm dwb) Storage on Sample Mats						
Genus/ Species	Event 1	Event 2	Event 3			
Agrostis alba	32.1	45.8	689.6			
Pontederia cordata	56.1	9.3	-2.4			
Canna flaccida	13.6	33.7	13.8			
Juncus effusus	110.3	201.0	359.4			
Total =	212.2	289.9	1,060.5			

3.4 Percent Nitrogen and Total Nitrogen Storage in Sample Mat Roots and Shoots

Percent Nitrogen in Sample Mat Roots and Shoots

The total nitrogen content (% dwb) of the roots and shoots of the nursery grown plant species sampled during the baseline and Sampling Events 1, 2 and 3 are presented in **Tables 21** and **22** and paired with **Figures 21** and **22**. These results show that between the baseline and Sample Event 1, the total percent nitrogen in roots and shoots of *Agrostis alba, Canna flaccida,* and *Juncus effusus* increased. The total percent nitrogen in both the roots and shoots of *Pontederia cordata* declined during this growing period. **Appendix B** presents the laboratory results of the percent nitrogen in the Sample Mat Biomass on a per sample event basis.

The growth period between Sample Events 1 and 2, total nitrogen in the roots (% dwb) of *Pontederia cordata* and *Juncus effusus* increased while *Agrostis alba* and *Canna flaccida* displayed a decline (see **Table 21** and **Figure 21**). During this growth period, the percentage of total nitrogen in the shoots of *Agrostis alba, Pontederia cordata,* and *Canna flaccida* increased and the percentage of total nitrogen in the shoots of *Juncus effusus* declined (see **Table 22** and **Figure 22**).

During the growth period between Sample Events 2 and 3 the total percent nitrogen increased in the roots of *Agrostis alba*, *Canna flaccida*, and *Juncus effusus* and decreased in *Pontederia cordata* (See **Table 21** and **Figure 21**). The percentage of nitrogen in the shoots of *Agrostis alba*, *Pontederia cordata*, *Canna flaccida*, and *Juncus effusus* all increased during this growth period (see **Table 22** and **Figure 22**).

Appendix B presents a summary of analytical data for nitrogen.

Nitrogen Storage on Sample Mats

The estimated storage of nitrogen (gm dwb) in the Sample Mat roots plus shoots (total nitrogen) of both the planted and recruited species varied by the rate, amount, and location (i.e., roots or shoots) of the storage. **Table 23** and **Figure 23** present the results of the net storage (roots plus shoots) of nitrogen for each of the three (3) sampling events on a per species basis. The general trend of the total nitrogen storage for each species was an increase in nitrogen during the three growth periods with a notable exception of *Pontederia cordata* that showed a decline in total nitrogen between Sample Events 2 and 3.

Table 21: Percent Total Nitrogen (dwb) in Sample Mat Roots						
Genus/ Species Baseline Event 1 Event 2 Event 3						
Agrostis alba	0.58	1.36	1.15	1.40		
Pontederia cordata	1.74	0.64	0.67	0.50		
Canna flaccida	0.53	1.16	0.67	2.20		
Juncus effusus	0.68	1.05	1.11	1.37		

Table 22: Percent Total Nitrogen (dwb) in Sample Mat Shoots					
Genus/ Species	Baseline	Event 1	Event 2	Event 3	
Agrostis alba	0.74	1.10	1.52	2.28	
Pontederia cordata	3.16	0.94	1.00	1.40	
Canna flaccida	0.73	1.21	1.46	1.84	
Juncus effusus	0.78	1.26	0.89	1.07	

Table 23: Total Nitrogen (gm dwb) Storage in Sample Mat Roots and Shoots						
Genus/ Species	Genus/ Species Event 1 Event 2 Event 3					
Agrostis alba	2.10	3.83	42.53			
Pontederia cordata	3.52	7.42	1.84			
Canna flaccida	0.61	2.79	12.43			
Juncus effusus	2.16	4.27	8.32			
Ludwigia spp.		1.55	7.29			
Other Species		0.15	0.53			
Total	8.39	20.00	72.95			

The recruitment of measurable levels nitrogen from Ludwigia spp. and Other Species began during the Sample Events 1 and 2 growth period. The data from the final growth period between Sample Events 2 and 3 show a substantial contribution to the total nitrogen storage on the Sample Mats was provided by these recruitment species (i.e., 11% of the overall nitrogen storage).

Nitrogen was stored in variable amounts in the roots of the species installed on the Sample Mat during each Sample Event. The rate of total nitrogen storage in the roots of each species increased from Sample Event to Sample Event (i.e., Baseline through Sample Event 3) with the exception of *Pontederia cordata* roots that lost (albeit net storage) nitrogen between Sample Events 2 and 3 (see **Table 24** and **Figure 24**).

These results show that between the baseline and Sample Event 1, *Pontederia cordata* roots had the highest nitrogen storage followed by *Agrostis alba*, *Juncus effusus*, and *Canna flaccida*. *Pontederia cordata* roots also displayed the highest net storage during the growth period between Sample Events 1 and 2 followed by *Agrostis alba*, *Juncus effusus*, and *Canna flaccida* (see **Table 24** and **Figure 24**).

The final growth period between Sample Events 2 and 3 had the highest levels of nitrogen storage in the roots of each species with the exception of *Pontederia cordata* which declined (see **Table 24** and **Figure 24**). During this growth period net nitrogen storage in *Agrostis alba* roots increased nine-fold. *Canna flaccida* displayed the second highest nitrogen storage during this growth period (5X increase) followed by *Juncus effusus* (nearly a 2X increase) during this growth period. The reason for the increases in root stored nitrogen in *Agrostis alba*, *Juncus effusus* and *Canna flaccida* was the interaction between both an increase in biomass and an increase in the percentage of the stored biomass composed of nitrogen (see **Table 24** and **Figure 24**).

Nitrogen was stored at variable amounts and rates in the shoots of *Agrostis alba*, *Canna flaccida* and *Juncus effusus* on the Sample Mat associated with each Sample Event (see **Table 25** and **Figure 25**). *Pontederia cordata* displayed a steady decline in the nitrogen stored in its shoots beginning with nearly no gains in stored nitrogen between the Baseline and Sample Event growth period, followed by a net loss in shoot nitrogen between the Sample Events 1 and 2 and Sample Event 2 and 3 growth periods (see **Table 25** and **Figure 25**). This loss was a result of the interaction of the reduction in shoot biomass production, percent nitrogen content and the mortally of *Pontederia cordata* documented during the Sample Event 3.

During the first growth period *Juncus effusus* accumulated the most nitrogen in its shoots followed by *Agrostis alba* and *Canna flaccida*. During the next growth period, growth between Sample Events 1 and 2, *Juncus effusus* continued to have the highest nitrogen storage in its shoots followed by *Agrostis alba* and *Canna flaccida*; however, the rate of nitrogen accumulation was higher in both *Agrostis alba* and *Canna flaccida* during this growth period (see **Table 25** and **Figure 25**).

Table 24: Total Nitrogen (gm dwb) Storage in Sample Mat Roots							
Genus Species	Genus Species Event 1 Event 2 Event 3						
Agrostis alba	1.65	2.92	26.40				
Pontederia cordata	3.52	7.84	2.30				
Canna flaccida	0.42	2.26	12.12				
Juncus effusus	0.62	2.44	4.38				
Total	Total 6.21 15.46 45.20						

Table 25: Total Nitrogen (gm dwb) Storage in Sample Mat Shoots							
Genus/ Species Event 1 Event 2 Event 3							
Agrostis alba	0.45	0.91	16.13				
Pontederia cordata	0.00	-0.42	-0.45				
Canna flaccida	0.19	0.53	0.31				
<i>Juncus effusus</i> 1.54 1.83 3.94							
Total 2.18 2.85 19.93							

The storage of nitrogen in the shoots of *Agrostis alba* and *Juncus effusus* increased substantially during the final growth period. *Agrostis alba* shoot nitrogen storage was so substantial during this growth period that over 50 percent of the nitrogen stored in Sample Mat shoots was contained in the *Agrostis alba* biomass. The nitrogen storage by *Juncus effusus* increased more than twofold during this growth period. *Canna flaccida* nitrogen storage in shoots declined during this growth period but maintained an overall net increase in storage (see **Table 25** and **Figure 25**).

3.5 Percent Phosphorous and Total Phosphorous Storage in Sample Mat Roots and Shoots

Percent Phosphorous in Sample Mat Roots and Shoots

The total phosphorous content (% dwb) of the roots and shoots of the nursery grown plant species sampled during the Baseline and Sampling Events 1, 2 and 3 are presented in **Tables 26** and **27** and the paired **Figures 26** and **27**. These results show that the assimilation of phosphorous (% dwb) in both the root and shoot of the nursery grown plant species installed on Sample Mats were less than the baseline conditions throughout the growing season (Sampling Events 1, 2 and 3). The laboratory results of the phosphorous in the Sample Mat biomass during Sample Events 1, 2 and 3 are presented in **Appendix B**.

Although the percent phosphorous in the roots varied between each of the growth event periods, the final growth period (Sample Events 2 and 3) displayed an increase in the percent phosphorus in the roots of *Canna flaccida*, *Juncus effusus*, and *Agrostis alba* (see **Table 26** and **Figure 26**). *Pontederia cordata* declined to its lowest levels (% phosphorous) during this growth period. The data indicated that *Canna flaccida* had the highest percentage of phosphorous in its root biomass during the final growth period followed by *Juncus effusus*, *Agrostis alba*, and *Pontederia cordata* (see **Table 26** and **Figure 26**).

The percentage of phosphorous in the shoots of *Canna flaccida* and *Agrostis alba* increased while *Pontederia cordata* and *Juncus effusus* decreased slightly during the final growth period (see **Table 27** and **Figure 27**). The data in **Table 27** and **Figure 27** show that *Agrostis alba* had the highest percentage of phosphorous in its shoot biomass during each of the three (3) growing periods followed by *Canna flaccida Juncus effusus* and *Pontederia cordata* period (see **Table 27** and **Figure 27**).

Table 26: Percent Total Phosphorous (dwb) in Sample Mat Roots							
Genus/ Species	Genus/ Species Baseline Event 1 Event 2 Event 3						
Agrostis alba	0.13	0.09	0.07	0.10			
Pontederia cordata	0.29	0.05	0.05	0.04			
Canna flaccida	0.20	0.10	0.05	0.15			
Juncus effusus	0.16	0.11	0.10	0.12			

Table 27: Mean Percent Phosphorous (dwb) in Sample Mat Shoots						
Genus/ Species Baseline Event 1 Event 2 Event 3						
Agrostis alba	0.24	0.120	0.120	0.147		
Pontederia cordata	0.48	0.060	0.057	0.037		
Canna flaccida	0.65	0.113	0.093	0.133		
Juncus effusus	0.17	0.087	0.067	0.063		

Phosphorous Storage on Sample Mats

The estimated storage of phosphorous (gm dwb) in the Sample Mat roots and shoots (total plant) of both the planted and recruited species varied by the rate, amount, and the location (i.e., roots or shoots) of the storage. **Table 28** and **Figure 28** present the results of the net storage (roots plus shoots) of phosphorous for each of the three (3) sampling events on a per species basis. The general trend of phosphorous storage in the roots plus shoots for each installed species was an increase in phosphorous during time between the three growth periods with notable exceptions of *Pontederia cordata* that during the Sample Event 2 and 3 (final growth period) showed a net loss and *Canna flaccida* that between the Baseline and Event 1 showed a slight net loss⁴ (see **Table 28** and **Figure 28**)

The recruitment of measurable levels of phosphorous from *Ludwigia* spp. and Other Species began during the Sample Event 1 through 2 growth period (see **Table 28** and **Figure 28**). During the final growth period (Sample Event 2 through 3), the phosphorous storage in the recruitment species continued to increase due to increases in shoot and root biomass production (i.e., 15% of the total phosphorous storage on Sample Mat during the final growth period).

Phosphorous was stored in variable amounts in the roots of the species installed on the Sample Mat during each Sample Event. The rate of phosphorous storage in the roots of each species increased from Sample Event to Sample Event (i.e., Baseline through Sample Event 3) with the exception of *Pontederia cordata* roots that lost (albeit net storage) phosphorous between Sample Events 2 and 3 (see **Table 29** and **Figure 29**).

These results show that between the Baseline Event and Sample Event 1 growth period, *Pontederia cordata* roots had the highest phosphorous storage followed by *Agrostis alba, Juncus effusus,* and *Canna flaccida. Pontederia cordata* roots also displayed the highest net storage during the growth period between Sample Events 1 and 2 followed by *Juncus effusus, Agrostis alba,* and *Canna flaccida* (see **Table 29** and **Figure 29**).

⁴ Net loss means that the measured phosphorous levels (gm dwb) fell below the installed phosphorous levels (gm dwb).

Table 28: Total Phosphorous (gm dwb) Storage in Sample Mat Roots Plus Shoots							
Genus Species	Genus Species Event 1 Event 2 Event 3						
Agrostis alba	0.073	0.166	2.831				
Pontederia cordata	0.196	0.202	-0.089				
Canna flaccida	-0.002	0.144	0.792				
Juncus effusus	0.093	0.266	0.542				
Ludwigia spp.		0.14	0.62				
Other Species	ies 0.008 0.03						
Total	0.360	0.927	4.726				

Table 29: Total Phosphorous (gm dwb) Storage in Sample Mat Roots				
Genus/ Species	Event 1	Event 2	Event 3	
Agrostis alba	0.066	0.143	1.845	
Pontederia cordata	0.262	0.298	0.017	
Canna flaccida	0.010	0.140	0.800	
Juncus effusus	0.024	0.165	0.348	
Total	0.36	0.75	3.01	

The final growth period (Sample Events 2 through 3) had the highest levels of phosphorous storage in the roots of each species with the exception of *Pontederia cordata* that displayed a decline in total phosphorus but still maintained a low level of phosphorous storage (see **Table 29** and **Figure 29**). During this growth period, net phosphorous storage in *Agrostis alba* roots increased by more than twelve-fold. *Canna flaccida* displayed the second highest phosphorous storage during this growth period (>5X increase) followed by *Juncus effusus* (>2X increase) during this growth period. The reason for the substantial increases in root stored phosphorous in *Agrostis alba, Juncus effusus* and *Canna flaccida* was the interaction between both an increase in biomass and the percentage of the stored biomass composed of phosphorous (see **Table 29**).

The assimilation of phosphorus into the shoots of the nursery-grown plants installed on the Sample Mats during each growth period ranged from a net loss to substantial storage of phosphorous (see **Table 30** and **Figure 30**). The data presented in **Table 30** and **Figure 30** indicate that both *Agrostis alba* and *Juncus effusus* shoots continued to accumulate phosphorous during each successive growth period with both displaying substantial phosphorous storage at the end of the final growth period. *Canna flaccida* shoots had a net loss of phosphorus during the first growth period and final growth period and only modest levels of phosphorous storage during the growth period between Sampling Events 1 and 2 (see **Table 30** and **Figure 30**).

The data show that *Pontederia cordata* had a steady decline in the phosphorous stored in its shoots beginning with nearly no gain in stored nitrogen between the Baseline and Sample Event 1 growth period, followed by a net loss in shoot nitrogen between the Sample Events 1 and 2 and Sample Event 2 and 3 growth periods (see **Table 30** and **Figure 30**). This loss was a result of the interaction of the reduction in stored shoot biomass, nitrogen content (% dwb) and the mortality of *Pontederia cordata* documented during the Sample Event 3.

Table 30: Total Phosphorous (gm dwb) Storage in Sample Mat Shoots					
Genus Species	Event 1	Event 2	Event 3		
Agrostis alba	0.007	0.023	0.987		
Pontederia cordata	-0.066	-0.096	-0.106		
Canna flaccida	-0.012	0.003	-0.008		
Juncus effusus	0.070	0.102	0.194		
Total -0.002 0.032 1.067					

4.0 ANALYSIS OF RESULTS

4.1 Normalized Biomass Production and Storage of Nitrogen and Phosphorous on a per Plant Basis

The root, shoot and root plus shoot biomass production was normalized to average biomass per plant species to evaluate performance of each planted species and to estimate the biomass production of each species on the Existing Mats for each of the three (3) growth periods monitored (Sample Events 1, 2 and 3). This data was then used to estimate the biomass production of each species on the Existing Mats for each of the three (3) growth periods monitored.

Similarly, the root, shoot and root plus shoot nitrogen and phosphorous storage data from the Sample Mats was normalized to average nitrogen and phosphorous per plant species (individual plants on a per species basis) to evaluate performance of each planted species and to estimate the nitrogen and phosphorus storage of each species on the Existing Mats for each of the three (3) growth periods analyzed (Sample Events 1, 2 and 3).

Normalized Biomass Production

The results of the normalized total biomass production of the nursery-grown plants installed on the Sample Mats indicate an increase from growth period to growth period with the exception of *Pontederia cordata* that declined between Sample Events 2 and 3 (see **Table 31** and **Figure 31**). The normalized data show that growth period between the Baseline and Sample Event 1, *Pontederia cordata* had the highest biomass production followed by *Juncus effusus*, *Agrostis alba* and *Canna flaccida*. During the growth period between Sample Events 1 and 2, *Canna flaccida* had the highest biomass production followed by *Pontederia cordata*, *Juncus effusus* and *Agrostis alba* (see **Table 31** and **Figure 31**).

During the final growth period between Sample Events 2 and 3, total biomass of *Agrostis alba* on a per plant basis increased by nearly tenfold. *Canna flaccida* and *Juncus effusus* biomass production on a per plant basis also increased significantly during this growth period. The biomass production rate of *Pontederia cordata* declined during this same time period due to the previously discussed mortality among its population (see **Table 31** and **Figure 31**).

Table 31: Average Root Plus Shoot Biomass (gm dwb) Storage on a per Plant Basis				
Genus/ Species	Event 1	Event 2	Event 3	
Agrostis alba	4.5	9.9	91.0	
Pontederia cordata	22.8	23.8	3.3	
Canna flaccida	4.1	36.5	55.3	
Juncus effusus	6.1	16.1	26.2	
Ludwigia spp.		1.1	5.0	
Other spp.		0.1	0.4	

Pontederia cordata had the highest production of root biomass on a per plant basis between the Baseline and Event 1 growth period followed by Agrostis alba, Canna flaccida and Juncus effusus. Between Event 1 and 2 the cumulative normalized root biomass production was highest for Canna flaccida followed by Pontederia cordata, Juncus effusus and Agrostis alba. Agrostis alba had the highest biomass production on a per plant basis during the final growth period followed by Canna flaccida and rush (see **Table 32** and **Figure 32**).

Sample Mat shoot biomass storage on a per plant basis was highest for *Juncus effusus* followed by *Pontederia cordata*, *Canna flaccida* and *Agrostis alba* between the Baseline and Sample Event 1 growth period. *Juncus effusus* produced the highest shoot biomass on a per plant basis during the growth period between Sample Events 1 and 2. During the same growth period, both *Canna flaccida* and *Agrostis alba* shoot biomass on a per plant basis increased while the average shoot biomass of a *Pontederia cordata* plant declined (see **Table 33** and **Figure 33**).

Agrostis alba and Juncus effusus had large increases in shoot biomass on a per plant basis during the final growth period. During this same growth period, the per plant biomass of *Canna flaccida* shoots declined but still displayed net production (storage) beyond the Baseline event. *Pontederia cordata* shoot biomass declined to a level (gm dwb) below the Baseline Event (net loss of biomass) on a per plant basis (see **Table 33** and **Figure 33**).

Appendix B presents a summary of the Laboratory results for biomass production in Sample Mats for baseline, and sample events 1, 2, and 3.

Table 32: Average Root Biomass (gm dwb) Storage on a per Plant Basis						
Genus/ Species Event 1 Event 2 Event 3						
Agrostis alba	3.4	8.2	66.4			
Pontederia cordata	4.9					
Canna flaccida	2.7	33.2	53.9			
Juncus effusus	1.7	8.0	11.8			

Table 33: Average Shoot Biomass (gm dwb) Storage on a per Plant Basis						
Genus/ Species Event 1 Event 2 Event 3						
Agrostis alba	1.15	1.64	24.63			
Pontederia cordata	2.08	0.34	-0.13			
Canna flaccida	1.36	3.37	1.38			
Juncus effusus	4.41	8.04	14.38			

Normalized Nitrogen and Phosphorous Storage

The result of the nitrogen storage on a per plant basis (roots and shoots) in nurserygrown plants installed on the Sample Mats on a per plant basis indicate that the general trend was an increase from growth period to growth period with the exception of *Pontederia cordata* that lost nitrogen between Sample Events 2 and 3. During growth period between Sample Events 1 and 2, the recruitment of *Ludwigia* spp. and Other Species began to contribute to measurable levels of nitrogen storage on a per plant basis. The growth and subsequent storage of nitrogen in these recruitment species on a per plant basis increased substantially during the final growth period⁵ (see **Table 34** and **Figure 34**).

The growth period between the Baseline and Sample Event 1, *Pontederia cordata* (roots plus shoots) displayed the highest nitrogen storage on a per plant basis followed by *Juncus effusus*, *Agrostis alba* and *Canna flaccida*. During the growth period between Sample Events 1 and 2, *Canna flaccida* had the displayed the highest accumulation of nitrogen on a per plant basis followed by *Pontederia cordata*, *Juncus effusus* and *Agrostis alba* (see **Table 34** and **Figure 34**).

During the final growth period between Sample Events 2 and 3, total nitrogen storage on a per plant basis increased substantially in *Agrostis alba*, *Canna flaccida*, and *Juncus effusus*. *Agrostis alba* had the highest total nitrogen content on a per plant basis followed by *Canna flaccida*, and *Juncus effusus*. The total nitrogen storage of *Pontederia cordata* declined during this same time period due its aforementioned mortality, reduced biomass production and percent nitrogen assimilation (gm dwb) (see **Table 34** and **Figure 34**).

In general, nitrogen storage in the roots on a per plant basis of each of the nursery grown plant species installed on the Sample Mats displayed net storage of nitrogen. Similarly, the storage of nitrogen in the roots of the installed plants (on a per plant basis) increased from growth period to growth period with one exception. The exception was *Pontederia cordata*, which displayed a decline in the rate of nitrogen assimilation on a per plant basis between the Event 2 and 3 growth period (see **Table 35** and **Figure 35**).

⁵ The recruitment of *Ludwigia* spp. and Other Species and the associated nitrogen storage measurements from the Sample Mat was normalized to nitrogen storage on a per plant basis. Because the number of Sample Mat cells that these plants occurred on was not known, they were each normalized based on the total number Sample Mat cells (N=90)

Table 34: Sample Mat Total Nitrogen (gm dwb) Storage on a perPlant Basis (Roots plus Shoots)						
Genus/ Species Event 1 Event 2 Event 3						
Agrostis alba	0.075	0.137	1.519			
Pontederia cordata	0.131	0.275	0.097			
Canna flaccida	0.061	0.279	1.243			
Juncus effusus	0.086	0.171	0.333			
Ludwigia spp.		0.017	0.081			
Other Species		0.002	0.006			

Table 35: Total Nitrogen (gm dwb) Storage in Sample Mat Roots on a per Plant Basis					
Genus/ Species Event 1 Event 2 Event 3					
Agrostis alba	0.059	0.104	0.943		
Pontederia cordata	0.130	0.290	0.121		
Canna flaccida	0.042	0.226	1.212		
Juncus effusus	0.025	0.098	0.175		

Pontederia cordata displayed the highest storage of nitrogen in its roots on a per plant basis between the Baseline and Event 1 growth period followed by Agrostis alba, Canna flaccida, and Juncus effusus. Between Events 1 and 2, the storage of nitrogen in roots (on a per plant basis) was highest in Pontederia cordata followed by Canna flaccida, Agrostis alba, and Juncus effusus. Canna flaccida had the highest nitrogen storage on a per plant basis between Event 2 and 3 followed by: Agrostis alba, Juncus effusus, and Pontederia cordata (see **Table 35** and **Figure 35**).

Nitrogen storage on a per plant basis in the shoots of *Agrostis alba* and *Juncus effusus* increased during each growth period. *Canna flaccida* shoots displayed net storage of nitrogen during each growth period but showed a decline in storage during the final growth period between Sample Events 2 and 3. *Pontederia cordata* shoots on a per plant basis showed little accumulation or a net loss⁶ of nitrogen of stored nitrogen during the growth periods (see **Table 36** and **Figure 36**).

Nitrogen storage on a per plant basis was the highest in *Juncus effusus* shoots between the Baseline and Sample Event 1 growth period followed *Canna flaccida*, and *Agrostis alba. Pontederia cordata* shoots on a per plant basis showed virtually no storage of nitrogen largely due to the decrease in the assimilation of nitrogen expressed as a percentage of the total biomass on a dry weight basis during this growth period (see **Table 36** and **Figure 36**).

Juncus effusus continued to store the most nitrogen in its shoots on a per plant basis followed by *Canna flaccida* and *Agrostis alba* during the growth period between Sample Events 1 and 2. During the same growth period, both *Canna flaccida* and *Agrostis alba* shoot biomass on a per plant basis increased while the average shoot biomass of an average *Pontederia cordata* plant declined (see **Table 36** and **Figure 36**).

During the final growth period (Sample Event 2 and 3), Agrostis *alba shoots* displayed the highest levels of nitrogen storage on a per plant basis. *Juncus effusus* shoots stored the next most nitrogen on a per plant basis followed by *Canna flaccida*. During this growth period *Pontederia cordata* shoots showed a loss of nitrogen on a per plant basis. (see **Table 36** and **Figure 36**).

⁶ Net loss means that the measured nitrogen levels (gm dwb) fell below the installed nitrogen levels (gm dwb).

Table 36: Total Nitrogen (gm dwb) Storage in Sample Mat Shoots on a per Plant Basis					
Genus/ Species Event 1 Event 2 Event 3					
Agrostis alba	0.016	0.032	0.576		
Pontederia cordata	0.000	-0.016	-0.024		
Canna flaccida	0.019	0.053	0.031		
Juncus effusus	0.062	0.073	0.157		

The results of the total phosphorous storage on a per plant basis in the nursery-grown plants installed on the Sample Mats on a per plant basis indicate that the general trend was an increase from growth period to growth period with the exception of *Pontederia cordata* that lost phosphorus between during the final growth period (Sample Events 2 and 3) and *Canna flaccida* that lost phosphorous during the first growth period (Baseline Event to Sample Event 1). During the growth period between Sample Events 1 and 2, the recruitment of *Ludwigia* spp. and Other Species roots and shoots began to contribute to measurable levels of phosphorous of these recruitment species on a per plant basis. The growth and subsequent storage of phosphorous of these recruitment species on a per plant basis increased substantially during the final growth period¹ (see **Table 37** and **Figure 37**).

The data in **Tables 37** and **Figure 37** indicates that during the growth period between the Baseline and Sample Event 1, *Pontederia cordata* (roots plus shoots) displayed the highest phosphorous storage on a per plant basis followed by *Juncus effusus*, *Agrostis alba* and *Canna flaccida*. During the growth period between Sample Events 1 and 2, *Canna flaccida* had the highest accumulation of nitrogen on a per plant basis followed by *Pontederia cordata*, *Juncus effusus* and *Agrostis alba* (see **Table 37** and **Figure 37**).

During the final growth period between Sample Events 2 and 3, total phosphorous storage on a per plant basis in the roots plus shoots of *Agrostis alba*; *Canna flaccida* and *Juncus effusus* increased substantially. *Agrostis alba* had the highest total phosphorus content on a per plant basis, followed by *Canna flaccida*, and *Juncus effusus*. The total phosphorus storage of *Pontederia cordata* declined during this same time period due plant mortality, reduced biomass production and percent nitrogen assimilation (see **Table 37** and **Figure 37**).

In general, the roots of each species on a per plant basis displayed net storage of phosphorous. The per plant storage of phosphorous in the roots of the installed plant species installed on the Sample Mats increased from growth period to growth period with one exception. The exception was in *Pontederia cordata* roots that declined in the rate of phosphorous assimilation in *Pontederia cordata* roots on a per plant basis between the Event 2 through Event 3 growth period (see **Table 38** and **Figure 38**).

¹ The recruitment of *Ludwigia* spp. and Other Species phosphorus storage measurements from the Sample Mat was normalized to phosphorous storage on a per plant basis. Because the number of Sample Mat cells that these plants occurred on was not known, they were each normalized based on the total number Sample Mat cells (N=90)

Table 37: Total Phosphorous (gm dwb) Storage in Sample Mat Roots plus Shoots on a per Plant Basis					
Genus Species Event 1 Event 2 Event 3					
Agrostis alba	0.0027	0.0062	0.1011		
Pontederia cordata	0.0070	0.0072	-0.0047		
Canna flaccida	-0.0002	0.0144	0.0792		
Juncus effusus	0.0037	0.0107	0.0217		
Ludwigia spp.		0.0016	0.0069		
Other Species		0.0001	0.0003		

Table 38: Total Phosphorous (gm dwb) Storage in Sample Mat Roots on a per Plant Basis						
Genus Species Event 1 Event 2 Event 3						
Agrostis alba	0.0024	0.0051	0.0659			
Pontederia cordata 0.0097 0.0110 0.0009						
Canna flaccida 0.0010 0.0140 0.0800						
Juncus effusus	0.0010	0.0066	0.0139			

Pontederia cordata had the highest storage of phosphorous in its roots on a per plant basis between the Baseline to Event 1 growth period followed by *Agrostis alba* and *Canna flaccida* and *Juncus effusus* which displayed the same storage of phosphorous during this growth period (see **Table 38** and **Figure 38**). Between Events 1 and 2, the storage of nitrogen in roots (on a per plant basis) was highest in *Pontederia cordata* followed by *Canna flaccida*, *Agrostis alba*, and *Juncus effusus*. *Canna flaccida* had the highest phosphorus storage in roots on a per plant basis during the final growth periods followed by:*Agrostis alba*, *Juncus effusus*, and *Pontederia cordata* (see **Table 38** and **Figure 38**).

On a per plant basis, *Pontederia cordata* shoots had a net loss of phosphorous storage during the each of the three growth periods measured. The phosphorous storage in the shoots of *Agrostis alba* and *Juncus effusus* on a per species basis increased successively during each growth period. *Canna flaccida* shoots had a net loss of phosphorous on a per species basis measured during Sampling Events 1 and 3 and showed modest phosphorous storage for the grow period between Sample Event 1 and 2 (see **Table 39** and **Figure 39**).

Between the Baseline and Sample Event 1 growth period, phosphorous storage on a per plant basis was the highest in *Juncus effusus* shoots followed by *Agrostis alba*. (see **Table 39** and **Figure 39**). *Juncus effusus* continued to store the most nitrogen in its shoots on a per plant basis followed *Agrostis alba* and *Canna flaccida* during the growth period between Sample Events 1 and 2 (see **Table 39** and **Figure 39**). During the final growth period, *Agrostis alba* had the highest phosphorous storage on a per plant basis followed to store the storage on a per plant basis followed to store the final growth period, *Agrostis alba* had the highest phosphorous storage on a per plant basis followed by *Juncus effusus* (see **Table 39** and **Figure 39**).

Table 39: Phosphorous (gm dwb) Storage in Sample Mat Shoots on a per Plant Basis				
Genus Species	Event 1	Event 2	Event 3	
Agrostis alba	0.0002	0.0008	0.0352	
Pontederia cordata	-0.0025	-0.0035	-0.0056	
Canna flaccida	-0.0012	0.0003	-0.0008	
Juncus effusus	0.0028	0.0041	0.0078	

4.2 Estimated Biomass Production and Nitrogen and Phosphorous Storage on Existing Mats

The values for the root, shoot and total (root plus shoot) biomass storage on per plant basis for each Sampling Event were used to estimate the root and shoot biomass on each of the three (3) Existing Mats. Specifically, the quantity of each of the nursery grown species planted on the Existing Mat were multiplied by the corresponding average biomass production on a per plant basis. The estimate of the Existing Mats biomass production (roots plus shoots) during each Sample Event are presented in **Tables 40**, **41** and **42** and paired **Figures 40**, **41** and **42**.

Based on the results of the nitrogen storage of the planted and recruitment species on the Sample Mat normalized to storage on a per plant basis, the stored nitrogen on the Existing Mats was estimated for each of the three (3) growth periods. **Table 43** and **Figure 43** present the results of the estimated storage of total nitrogen (roots plus shoots) on the Existing Mats during Sample Events 1, 2 and 3. **Table 44** and **Figure 45** present the results of the storage of nitrogen in the roots and **Table 45** and **Figure 45** present the results of the storage of nitrogen in the roots of the plants on the Existing Mats during Sample Events 1, 2 and 3.

Based on the results of the phosphorous storage of the planted and recruitment species on the Sample Mat normalized to storage on a per plant basis, the stored phosphorous on the Existing Mats was estimated for each of the three (3) growth periods. **Table 46** and **Figure 46** present the results of the estimated storage of total phosphorous (roots plus shoots) on a per species basis during Sample Events 1, 2 and 3. **Table 47** and **Figure 47** present the results of the storage of phosphorous in the roots and **Table 48** and **Figure 48** present the results of the storage of phosphorous in the roots of the Existing Mats during Sample Events 1, 2 and 3.

Table 49 and **Figure 49** present the results of the combined estimated storage of total nitrogen (roots plus shoots) for all three Existing Mats during Sample Events 1, 2 and 3. **Table 50** and **Figure 50** present the results of the combined storage of nitrogen in the roots and **Table 51** and **Figure 51** present the results of the combined storage of nitrogen in the roots of the plants on the Existing Mats during Sample Events 1, 2 and 3.

Table 52 and **Figure 52** present the results of the combined estimated storage of total phosphorous (roots plus shoots) for all three Existing Mats during Sample Events 1, 2 and 3. **Table 53** and **Figure 53** present the results of the combined storage of phosphorous in the roots and **Table 54** and **Figure 54** present the results of the combined storage of phosphorous in the roots of the plants on the Existing Mats during Sample Events 1, 2 and 3.

Table 40: Estimated Root Plus Shoot Biomass (gm dwb) Storage on Existing Mat			
Genus/ Species	Event 1	Event 2	Event 3
Agrostis alba	2,074.0	4,546.5	41,862.4
Pontederia cordata	8,678.7	9,033.9	1,249.0
Canna flaccida	813.5	7,307.5	11,053.5
Juncus effusus	3,185.9	8,360.9	13,627.5
Ludwigia spp.		1,745.0	7,919.3
Other spp.		203.6	565.3
Total	14,752.1	31,197.5	76,276.9

Table 41: Estimated Storage of Root Biomass (gm dwb) on Existing Mat			
Genus/ Species	Event 1	Event 2	Event 3
Agrostis alba	1,545.9	3,793.4	30,532.5
Pontederia cordata	7,889.2	8,903.1	1,823.0
Canna flaccida	541.1	6,633.1	10,777.1
Juncus effusus	891.3	4,179.8	6,151.6
Total	10,867.5	23,509.3	49,284.2

Table 42: Estimated Storage of Shoot Biomass (gm dwb) on Existing Mat			
Genus/ Species	Event 1	Event 2	Event 3
Agrostis alba	528.1	753.2	11,329.9
Pontederia cordata	789.4	130.8	-48.2
Canna flaccida	272.4	674.4	276.4
Juncus effusus	2,294.6	4,181.2	7,475.9
Total	3,884.6	5,739.5	19,034.0

Table 43: Estimated Total Nitrogen (gm dwb) Storage on Existing Mat Roots Plus Shoots			
Genus/ Species	Event 1	Event 2	Event 3
Agrostis alba	34.4	62.9	698.8
Pontederia cordata	49.6	104.5	36.9
Canna flaccida	12.2	55.7	248.6
Juncus effusus	45.0	88.8	173.1
Ludwigia spp.		26.9	126.4
Other Species		2.6	9.2
Total	141.2	341.3	1,292.9

Table 44: Estimated Total Nitrogen (gm dwb) Storage in Existing Mats Roots				
Genus Species	Event 1	Event 2	Event 3	
Agrostis alba	27.0	48.0	433.7	
Pontederia cordata	49.6	110.4	45.9	
Canna flaccida	8.4	45.1	242.4	
Juncus effusus	12.9	50.7	91.2	
Total	98.0	254.2	813.2	

Table 45: Estimated Total Nitrogen (gm dwb) Storage in Existing Mat Shoots			
Genus/ Species	Event 1	Event 2	Event 3
Agrostis alba	7.39	14.90	265.06
Pontederia cordata	0.02	-5.92	-9.04
Canna flaccida	3.77	10.59	6.23
Juncus effusus	32.04	38.09	81.88
Total	43.21	57.67	344.13

(psi)

Table 46: Estimated Total Phosphorous (gm dwb) Storage in Existing Mats Roots Plus Shoots			
Genus Species	Event 1	Event 2	Event 3
Agrostis alba	1.24	2.83	46.52
Pontederia cordata	2.65	2.75	-1.78
Canna flaccida	-0.03	2.87	15.84
Juncus effusus	1.94	5.54	11.27
Ludwigia spp.		2.43	10.75
Other Species		0.14	0.52
Total	5.81	16.56	83.11

Table 47: Estimated Total Phosphorous (gm dwb) Storage inExisting Mats Roots			
Genus Species	Event 1	Event 2	Event 3
Agrostis alba	1.09	2.35	30.31
Pontederia cordata	3.69	4.19	0.35
Canna flaccida	0.20	2.81	16.00
Juncus effusus	0.50	3.43	7.23
Total	5.47	12.78	53.88

Table 48: Estimated Total Phosphorous (gm dwb) Storage inExisting Mats Shoots			
Genus Species	Event 1	Event 2	Event 3
Agrostis alba	0.11	0.38	16.21
Pontederia cordata	-0.93	-1.34	-2.13
Canna flaccida	-0.24	0.06	-0.16
Juncus effusus	1.45	2.12	4.04
Total	0.38	1.21	17.96

Table 49: Estimated Total Nitrogen (gm dwb) Storage in Existing Mat Roots Plus Shoots (Mat x 3)					
	Event 1 Event 2 Event 3				
Agrostis alba	103.3	188.6	2,096.3		
Pontederia cordata	148.8	313.4	110.7		
Canna flaccida	36.6	167.2	745.8		
Juncus effusus	134.9	266.5	519.2		
Ludwigia spp.		80.6	379.1		
Other Species		7.7	27.7		
Total 423.6 1,023.9 3,878.8					

Table 50: Estimated Total Nitrogen (gm dwb) Storage in Existing Mats Roots (Mat x 3)					
Genus Species	Event 1	Event 2	Event 3		
Agrostis alba	81.1	143.9	1,301.1		
Pontederia cordata	148.7	331.2	137.8		
Canna flaccida	25.3	135.4	727.2		
Juncus effusus	38.8	152.2	273.6		
Total	Total 294.0 762.7 2,439.6				

Table 51: Estimated Total Nitrogen (gm dwb) Storage in Existing Mat Shoots (Mat x 3)				
	Event 1	Event 2	Event 3	
Agrostis alba	22.16	44.71	795.19	
Pontederia cordata	0.06	-17.75	-27.12	
Canna flaccida	11.31	31.76	18.68	
Juncus effusus	96.11	114.27	245.64	
Total 129.63 173.00 1,032.39				

Table 52: Estimated Total Phosphorous (gm dwb) Storage in Existing Mats Roots Plus Shoots (Mat x 3)				
Genus Species	Event 1	Event 2	Event 3	
Agrostis alba	3.73	8.50	139.55	
Pontederia cordata	7.96	8.24	-5.35	
Canna flaccida	-0.10	8.62	47.52	
Juncus effusus	5.83	16.63	33.82	
Ludwigia spp.		7.28	32.24	
Other Species		0.42	1.56	
Total	17.42	49.27	247.78	

psi

Table 53: Estimated Total Phosphorous (gm dwb) Storage in Existing Mats Roots (Mat x 3)						
Genus Species	Genus Species Event 1 Event 2 Event 3					
Agrostis alba	3.27	7.06	90.92			
Pontederia cordata	11.06	12.58	1.04			
Canna flaccida	0.61	8.42	47.99			
Juncus effusus	1.49	10.28	21.70			
Total	16.42	38.35	161.65			

Table 54: Estimated Total Phosphorous (gm dwb) Storage in Existing Mats Shoots (Mat x 3)				
Genus Species	Event 1	Event 2	Event 3	
Agrostis alba	0.32	1.13	48.63	
Pontederia cordata	-2.80	-4.03	-6.39	
Canna flaccida	-0.71	0.19	-0.47	
Juncus effusus	4.34	6.35	12.12	
Total	1.15	3.64	53.89	

4.3 Management Considerations

The results of this study provide some insight into the future management considerations for the use of the vegetated floating mats for nitrogen and phosphorous sequestration and removal. This section discusses these management considerations from two perspectives including: 1) the net nitrogen and phosphorous storage in the roots and shoots of the installed and recruited plant species on the Existing Mats during the growing period analyzed; and, 2) the unit cost of the storage of both nitrogen and phosphorous in the roots and shoots of the installed and recruited plant species on the Existing Mats during the growing period analyzed; and, 2) the unit cost of the installed and recruited plant species on the Existing Mats during the growing period analyzed.

The storage of total nitrogen (roots plus shoots) in the nursery grown plant species on a per plant basis installed on the Existing Mat(s) and Sample Mat(s) increased steadily at variable rates (on a per plant basis) during the growth period analyzed with one exception. The exception was *Pontederia cordata* that had a net storage of total nitrogen (roots plus shoots) between the Baseline through Sample Event 2 but a significant decline between Sample Events 2 and 3 growth period. Ludwigia spp. that recruited during the growth period between Sample Event 1 through 3 stored more nitrogen per plant than *Pontederia cordata* (see **Figure 55**).

Agrostis alba stored the highest amount of nitrogen on a per plant basis followed by Canna flaccida, Juncus effusus, and Pontederia cordata. In fact, Agrostis alba on a per plant basis stored more nitrogen than the other planted and recruited species combined. The management implication for the storage of nitrogen under water quality conditions similar to Mullock Creek is to maximize the use of Agrostis alba on future floating mat installations. Both Canna flaccida and Juncus effusus, in that order, which also stored significant amounts of total nitrogen, could be used efficiently as supplemental plantings depending on the project objectives.

The storage of total phosphorous (roots plus shoots) in *Agrostis alba*, *Canna flaccida* and *Juncus effusus* increased steadily at variable rates during the growth period. The storage of total phosphorous in *Pontederia cordata* on a per plant basis increased from the Baseline through Sample Event 2 growth period, but declined significantly during the final growth period. Similar to the nitrogen storage, *Agrostis alba* nearly stored more phosphorous than all the other installed and recruited species combined. The management implications of these results if managing the vegetated floating mats for total phosphorous storage is to maximize the use of *Agrostis alba* followed by *Canna flaccida* and *Juncus effusus* (see **Figure 56**).

The sampling data for total nitrogen and phosphorous storage (roots plus shoots) during the growth period analyzed (May through October) generally support that the harvest of the plant material from the Existing Mats should occur near the end of a typical Lee County growing season due to the overall increase of stored phosphorous and nitrogen from Sample Event to Sample Event. The exact timing of the fall harvest is likely to vary from year to year depending on local conditions (e.g., heavy frost or possible freezes) and other management decisions.

The sample data of shoot growth during the growth period analyzed do not support the harvesting a crop of shoots of any of the species installed on the Existing Mat for several reasons⁸. Both *Agrostis alba* and *Juncus effusus* steadily increased in the amount of stored nitrogen and phosphorous in its shoots on a per plant basis during each of the three (3) growth periods measured. *Canna flaccida* shoots had successive increases in stored nitrogen and phosphorous between the Baseline through Sample Event 2 growth period and showed a slight decline between Sample Event 2 through 3 but not appreciable enough to warrant harvesting. *Pontederia cordata* shoots on a per plant basis show virtually no increase in stored nitrogen or phosphorous analyzed during the growth period analyzed.

Nearly all management decisions or practices strive to maximize the cost to benefit. In this study, the cost was considered to be the unit cost of the installation of each of the nursery-grown plants (plant plus installation) versus the nitrogen and phosphorous stored on a per plant basis. Because the price per installed plant was the same for each of the species (\$0.60), the species that stored the most nitrogen and phosphorous on a per plant basis were obviously the most cost effective.

Based on the total nitrogen storage on a per plant basis and the cost of each plant, *Agrostis alba* cost \$0.39 per gram of nitrogen stored on a dry weight basis, followed by *Canna flaccida* at \$0.48 per gram, *Juncus effusus* at \$1.80 per gram and *Pontederia cordata* at \$6.18 per gram (see **Table 55**). Phosphorous storage on a per gram basis was most cost effective with *Agrostis alba* costing \$5.93 per gram followed by *Canna flaccida* at \$7.58 and *Juncus effusus* at \$27.68 per gram (see **Table 56**).

⁸ Harvesting of a "crop of shoots" refers to the removal of shoots and consequently nitrogen from species on the Existing Mat during the growing season expecting comparable shoot regrowth and storage of nitrogen during the same growing season.

Table 55: Estimated Cost of Total Nitrogen Storage on Existing Mat					
Genus / Species	# Plants/ Mat	Plant Cost	Total Nitrogen Storage (gm dwb)	Cost per gm (dwb)	Cost per pound (dwb)
Agrostis alba	460	\$276.00	698.76	\$0.39	\$176.90
Pontederia cordata	380	\$228.00	36.90	\$6.18	\$2,803.19
Canna flaccida	200	\$120.00	248.61	\$0.48	\$217.72
Juncus effusus	520	\$312.00	173.07	\$1.80	\$816.46
Totals =	1,560	\$936.00	1,157.3	\$0.81	\$367.41

Table 56: Estimated Cost of Total Phosphorous Storage on Existing Mat					
Genus / Species	# Plants/ Mat	Plant Cost	Total Phosphorous Storage (gm dwb)	Cost per gm (dwb)	Cost per pound (dwb)
Agrostis alba	460	\$276.00	46.51	\$5.93	\$2,689.79
Pontederia cordata	380	\$228.00	NA	NA	NA
Canna flaccida	200	\$120.00	15.84	\$7.58	\$3,438.21
Juncus effusus	520	\$312.00	11.27	\$27.68	\$12,555.37
Totals =	1,560	\$936.00	73.62	\$12.71	\$5,765.13

Several scenarios of future planting configurations on the Existing Mats were evaluated based on the known cost and storage of both nitrogen and phosphorous on a per plant basis. **Tables 57** and **58** present the estimated total cost per gram of nitrogen and phosphorous storage if planting the Existing Mats with a 50 percent mix of *Canna flaccida* and *Agrostis alba* which had the highest storage of phosphorous and nitrogen on a per plant basis. **Tables 59** and **60** present the estimated total cost per gram of nitrogen and phosphorous storage when planting the Existing Mats with an equal mixture of *Agrostis alba*, *Canna flaccida* and *Juncus effuses,* species that each stored appreciable amounts of both nitrogen and phosphorous storage on a per species basis. Based on the results of this study, both scenarios outlined above reveal that substantially greater amounts of nitrogen and phosphorous can be stored on the Existing Mats in a more cost effective manner.

Table 57: Estimated Cost of Total Nitrogen Storage on Existing Mat with 50 percent Distribution of the Species with Highest Nitrogen Storage					
Genus / Species	pecies # Plants/ Plant Cost Plant Cost per Cost per Mat Cost Cost (dwb) (dwb)				
Agrostis alba	780	\$468.00	1,184.8	\$0.39	\$176.90
Canna flaccida	780	\$468.00	969.54	\$0.48	\$217.72
Totals	1,560	\$936.00	2,154.4	\$0.43	\$195.03

Table 58: Estimated Cost of Total Phosphorous Storage on Existing Mat with50 percent Distribution of Species with Highest Phosphorous Storage					
Genus / Species	# Plants/ MatPlantTotal Phosphorous Storage (gm dwb)Cost per gm (dwb)Cost per pour (dwb)				
Agrostis alba	780	\$468.00	78.9	\$5.93	\$2,689.79
Canna flaccida	780	\$468.00	61.78	\$7.58	\$3,438.21
Totals	Totals 1,560 \$936.00 140.7 \$6.65 \$3,016.37				

Table 59: Estimated Cost of Total Nitrogen Storage on Existing Mat Maximized forPlanted Species Diversity										
Genus / Species# Plants/ MatPlant CostTotal Nitrogen Storage (gm dwb)Cost per gm (dwb)Cost										
Agrostis alba	520	\$312.00	789.88	\$0.39	\$176.90					
Canna flaccida	520	\$312.00	646.36	\$0.48	\$217.72					
Juncus effusus	520	\$312.00	173.16	\$1.80	\$816.46					
Totals	1,560	\$936.00	1,436.24	\$0.65	Totals 1,560 \$936.00 1,436.24 \$0.65 \$651,464.10					

Table 60: Estimated Cost of Total Phosphorous Storage on Existing Mat Maximized for Planted Species Diversity						
Genus / Species	# Plants/ Plant Plant Plant Plants/ Plant Cost per Cost per pound gm pound (dwb)					
Agrostis alba	520	\$588.00	52.58	\$11.18	\$5,071.14	
Canna flaccida	520	\$228.00	41.18	\$5.54	\$2,512.89	
Juncus effuses	520	\$120.00	11.27	\$10.65	\$4,830.73	
Totals	Totals 1,560 \$816.00 105.04 \$7.77 \$3,524.39					

Additional nutrient management considerations for the deployment of the vegetated floating mats in other water bodies based on the data gathered during this study could include extrapolating the storage of nutrients on a per unit time basis and/or the establishment of a relationship of storage of nitrogen and phosphorus on the Existing Mats as gallons of water treated at prescribed nitrogen and phosphorus reduction target levels. The average storage of nitrogen and phosphorous on a per unit of time basis could be a useful planning tool when combining the use of the floating mats with other water quality treatment best management practices (BMPs) that assume nutrient removal over time such as in stormwater retention systems.

In this study, it was estimated that an Existing Mat stored 1.16 kilograms of nitrogen⁹ on a dry weight basis during the 183 day growth period¹⁰ analyzed. For that storage rate, the average per day storage of nitrogen was 6.32 gm/day in the roots plus shoots of the nursery grown plants on an Existing Mat. This equals an estimated average of 18.96 gm/day of nitrogen storage over a six (6) month period during the growing season on the Existing Mats (N=3).

As an example, assume a project is being planned that will require the conversion of pine flatwoods to a light industrial complex. The natural runoff characteristics for total nitrogen is typically lower for pine flatwoods (1.0 mg/L) than a light industrial landuse (1.2mg/L).¹¹ Assuming the goal for the treatment of stomwater for this project is to maintain the existing condition (i.e., pine flatwoods) for the mass loading of nitrogen to a

¹¹ Source: *Stormwater Characteristics of Natural Vegetation Communities in Florida* presented by Harvey Harper, Ph.D., P.E. at the Technical Advisory Committee meeting on October 01, 2008, available at: <u>http://www.dep.state.fl.us/water/wetlands/erp/rules/ stormwater/ docs/</u> nat_com

⁹ The estimate nitrogen storage (1.16 kilograms) was calculated based on the nitrogen stored in the nursery grown plant species roots plus shoots as detailed in previous sections of this study. This value does not reflect the storage of nitrogen in the roots plus shoots of species that recruited on the Sample Mats and/or Existing Mats.

¹⁰ 183 days of growth during the typical Lee County growing season is equal to approximately 6 months during the growing season.

nearby waterbody. The mass loading of the pine flatwoods is assumed to be 1.3 kg/year. The mass loading of nitrogen of the water in the same post development basin is assumed to be 20 kg/year. In order to meet our treatment goal for nitrogen, 18.7 kg /year of nitrogen must be treated or removed from the contributing basin.¹²

In our example above, the planned development site will implement a series of inline BMPs (i.e., wet detention system, stormwater reuse in landscape areas, rehydration of wetlands, etc.) that will achieve a net reduction in mass loading of nitrogen by 15.9 kg/year. This value leaves the development 2.8 kg/year short of the treatment goal of nitrogen discharge to the water body.

Theoretically the implementation of the three (3) Existing Mats in the BMP treatment series with the same planting configuration and growth period would store 3.48 kilograms of nitrogen per year. This removal rate, in combination with other best management practices, would meet the nitrogen treatment goal for this project assuming that Existing Mats stored nitrogen at the rates observed during this study and the roots plus shoots were harvested near the end of each growing season. If similar nutrient removal rates for individual plant species measured during this study could be achieved, the efficiency of annual nitrogen removal from the aforementioned example could be significantly improved.

4.4 Additional Considerations

The results of this study clearly show that additional considerations with regard to providing recommendations for the implementation of vegetated floating mats for the sequestration of nutrient under a wide range of water quality conditions is needed. This study explored the effectiveness of the use of vegetated floating mats for the storage of nitrogen and phosphorous under a specific set of conditions. These conditions include a specific palate of plants located in a waterbody that has water quality better than the mean of all waterbodies in the state of Florida. While this study provides insight and useful information with regard to the future use of the vegetated floating mats for nutrient sequestration in Lee County waterbodies, recommended further studies that would aid in the understanding of the best methods for the implementation of the mats include:

• A bench or field study of the nutrient storage capabilities of plant species under variable nutrient levels ranging from low levels of nutrients to high levels of nutrients.

¹² The mass loading for total nitrogen associated with the light industrial and pine flatwoods were generally derived from the Southwest Florida Water Management District Draft BMP Review Aid associated with phosphorous discharge validation for a development project located in the Kissimmee River Basin. Also not required for this basin, nitrogen was analyzed during the modeling conducted for this validation for offsite phosphorus discharge

- Assessment of waterbody morphology (depth, flow regime, etc.) and levels of plant available nitrogen and phosphorous in the water column to prioritize locations for future use of the mats as a BMP.
- Analysis of the contribution of bio-film associated with the roots of plants installed on floating mats in the storage of nutrients.
- Exploration of the best practices for the beneficial use of harvested biomass from the floating mats (compositing, etc.).
- Study of complimentary practices such as waterbody aeration or denitrification walls or zones that may maximize the effectiveness of nutrient storage of the plants installed on the mats.\
- Effects of selective harvesting on biomass production and nutrient uptake.

5.0 CONCLUSIONS

The objective of this study was to document the effectiveness of the floating plant mats in sequestering nutrients from a structurally controlled portion of Mulloch Creek during a typical Lee County growing season (May through October, 2009). The design of this study included the installation of three 6-ft X 6-ft planted floating sample mats paired with the replanting of each of the 22-ft by 20-ft Existing mats. Baseline conditions were established and sampling for roots and shoots biomass was conducted during Sample Events 1, 2 and 3 where a single sample mat was pulled, roots and shoots weighed and triplicate samples analyzed for total nitrogen and phosphorous.

Water quality monitoring was also conducted on a monthly basis beginning in May 2009 through November 2009 to document the concentrations of both organic and inorganic forms of nitrogen and phosphorous at two (2) upgradient and one downgradient locations. While these results did not display trends in nitrogen and phosphorous reduction from the upgradient to downgradient sample location, they did show that the water quality in the creek measured by nitrogen and phosphorous concentrations was below the values that are typical of such water quality parameters for Florida's lakes and streams. In addition, the water quality monitoring showed that the inorganic fraction of the total nitrogen and ortho-phosphate that are the plant available forms of these nutrients occurred at relatively low levels, particularly from a plant nutrient standpoint.

The storage of total nitrogen (roots and shoots) of both the planted and recruited species on the Sample Mat varied by the rate, amount, and location (i.e., roots or shoots) of the storage. The general trend of the total nitrogen storage for each species was an increase in nitrogen during the three growth periods with a notable exception of *Pontederia cordata* that showed a decline in total nitrogen during the final growth period (Sample Events 2 through 3). *Agrostis alba* stored the most total nitrogen during the growth period (May through October) analyzed followed by *Canna flaccida*, *Juncus effusus* and *Pontederia cordata* largely due to the increases in biomass.

The recruitment of measurable levels of nitrogen from *Ludwigia* spp. and Other Species began between the Sample Events 1 and 2 growth period. These recruitment species had a substantial contribution to the total nitrogen storage stored on the Sample Mats over the growth period analyzed.

Agrostis alba stored the highest levels of root nitrogen on the Sample Mats, followed by *Canna flaccida*, *Juncus effusus*, and *Pontederia cordata*. Nitrogen storage in the Sample Mat shoots was also highest, followed by *Juncus effusus* and *Canna flaccida*. *Pontederia cordata* shoots lost nitrogen during the growth period analyzed.

Total nitrogen storage (roots plus shoots) normalized to a per plant basis was highest in *Agrostis alba*, followed by *Canna flaccida*, *Juncus effusus*, and *Pontederia cordata*. The roots of *Canna flaccida* stored the most nitrogen on a per plant basis which was followed by *Agrostis alba*, *Juncus effusus* and *Pontederia cordata*. Conversely, the

shoots of *Agrostis alba* on a per plant basis stored the highest levels of nitrogen, followed by *Juncus effusus* and *Canna flaccida*.

Based on the quantities of the nursery grown plant species installed and recruited on the Existing Mats and the associated total nitrogen storage on a per plant basis for these species, a total of 1,292 grams on a dry weight basis of nitrogen was stored on each Existing Mat. *Agrostis alba* accounted for the highest nitrogen storage (698.8 gm) followed by *Canna flaccida* (248.6 gm), *Juncus effusus* 173.1 gm, Ludwigia species (126.4 gm), *Pontederia cordata* (36.9 gm) and other recruitment species (9.2 gm).

The general trend of phosphorous storage in the roots plus shoots for each installed species was an increase in phosphorous during the three growth periods except for *Pontederia cordata* that showed a net loss during the Sample Event 2 and 3 (final growth period). Also contributing to Sample Mat phosphorous storage in the roots plus shoots over the growth period analyzed were the recruitment of *Ludwigia* spp. and Other Species.

The highest levels of phosphorous stored in Sample Mats roots occurred in *Agrostis alba* followed by *Canna flaccida* and *Juncus effusus*. *Pontederia cordata* roots did not store phosphorous on the Sample Mats. Phosphorous storage in the Sample Mat shoots was also highest in *Agrostis alba* followed by *Juncus effusus*. Both *Pontederia cordata* and *Canna flaccida* shoots did not store phosphorous during the growing season (May through October).

Total phosphorous storage (roots plus shoots) normalized to a per plant basis was highest in *Agrostis alba*, followed by *Canna flaccida*, *Juncus effusus*, Ludwigia spp. and Other Species. The roots of *Canna flaccida* stored the most phosphorous on a per plant basis which was followed by *Agrostis alba*, *Juncus effusus* and *Pontederia cordata*. Conversely, the shoots of *Agrostis alba* on a per plant basis stored the highest levels of phosphorous followed by *Juncus effusus*. Neither *Pontederia cordata* nor *Canna flaccida* shoots on a per plant basis stored phosphorous during the growing season.

Based on the quantities of the nursery grown plant species installed and recruited on the Existing Mats and the associated total phosphorous storage (roots plus shoots) on a per plant basis for these species, a total of 83.11 grams on a dry weight basis of phosphorous was stored on each Existing Mat. *Agrostis alba* accounted for the highest phosphorous storage (46.52 gm) followed by *Canna flaccida* (15.84 gm), *Juncus effusus* (11.27 gm), Ludwigia species (10.75 gm), and other recruitment species (0.52 gm).

The sampling data for total nitrogen and phosphorous storage (roots plus shoots) during the growth period analyzed (May through October) generally support that the harvest of the plant material from the Existing Mats should occur near the end of a typical Lee County growing season due to the overall increase of stored phosphorous and nitrogen from Sample Event to Sample Event. The exact timing of the fall harvest is likely to vary

from year to year depending on local conditions (e.g., heavy frost or possible freezes) and other management decisions.

The sample data of shoot growth during the growth period analyzed do not support the harvesting a crop of shoots of any of the species installed on the Existing Mat for several reasons. Both *Agrostis alba* and *Juncus effusus* steadily increased in the amount of stored nitrogen and phosphorous in its shoots on a per plant basis during each of the three (3) growth periods measured. *Canna flaccida* shoots had successive increases in stored nitrogen and phosphorous between the Baseline through Sample Event 2 growth period and showed a slight decline between Sample Event 2 through 3 but not appreciable enough to warrant harvesting. *Pontederia cordata* shoots on a per plant basis show virtually no increase in stored nitrogen or phosphorous analyzed during the growth period analyzed.

Nearly all management decisions or practices strive to maximize the cost to benefit. In the case of this study, the cost was considered to be the unit cost of the installation of each of the nursery-grown plants (plant plus installation) versus the nitrogen and phosphorous stored on a per plant basis. Because the price per installed plant was the same for each of the species (\$0.60), the species that stored the most nitrogen and phosphorous on a per plant basis were obviously the most cost effective.

Based on the total nitrogen storage on a per plant basis and the cost of each plant (\$0.60 per plant installed), *Agrostis alba* cost \$0.39 per a gram of nitrogen stored on a dry weight basis, followed by *Canna flaccida* at \$0.48 per gram, *Juncus effusus* at \$1.80 per gram and *Pontederia cordata* at \$6.18 per gram (see **Table 55**). Phosphorous storage on a per gram basis among the species evaluated was most cost effective with *Agrostis alba* costing \$5.93 per gram followed by *Canna flaccida* at \$7.58 and *Juncus effusus* at \$27.68 per gram (see **Table 56**). Because *Pontederia cordata* did not store phosphorous, no costs were calculated.

Based on the cost of storage of either nitrogen or phosphorous on a per plant basis, altering the plant quantities to favor both *Agrostis alba* and *Canna flaccida* and to a lesser extent *Juncus effusus* can result in substantially greater amounts of nitrogen and phosphorous stored on the Existing Mats in a more cost effective manner.

While a substantial level of insight into the use of vegetated floating mats was gained by this study, further study with regards to providing recommendations for the implementation of vegetated floating mats for the sequestration of nutrients under a wide range of water quality conditions is needed.

6.0 LIST OF REFERENCES

Fribourg, H.A. 1953. *A Rapid Method for Washing Roots*. Agronomy Journal, 45:334-335

Friedemann, M. and J. Hand. 1992. *Typical water quality values for Florida's lakes, streams, and estuaries.* Standards and Monitoring Section, Bureau of Surface Water Management, Florida Dept. of Environmental Regulation.

Florida Department of Environmental Protection, 2008. *Stormwater Characteristics of Natural Vegetation Communities in Florida* presented by Harvey Harper, Ph.D., P.E. at the Technical Advisory Committee meeting on October 01, 2008, available at: <u>http://www.dep.state.fl.us/water/wetlands/erp/rules/stormwater/docs/nat_com</u>

USDA-NRCS. 1997. *National Grazing Lands Handbook. Separating Roots from the Soil by Hand Sieving.* USDA-NRCS, Washington, DC.

USDA-NRCS. 1997. *National Grazing Lands Handbook. Above-Ground Biomass (Plant) Determinations.* USDA-NRCS, Washington, DC.

Fribourg, H.A. 1953. *A Rapid Method for Washing Roots*. Agronomy Journal, 45:334-335

Wunderlin, R. P., and B. F. Hansen. 2003. *Guide to the Vascular Plants of Florida, Second Edition*. University Press of Florida, Gainesville.

Wunderlin, R. P., and B. F. Hansen. 2008. *Atlas of Florida Vascular Plants*: (<u>http://www.plantatlas.usf.edu</u>). [S. M. Landry and K. N. Campbell (application development), Florida Center for Community Design and Research.] Institute for Systematic Botany, University of South Florida, Tampa.

APPENDIX A

WATER QUALITY LABORATORY REPORTS

Nick Gallant PSI 12650 New Brittany Blvd Fort Myers, FL 33907

Re:	SunLabs Project Number:	090701.01
	Client Project Description:	Lee County Plant Study

Dear Mr. Gallant:

Enclosed is the report of laboratory analysis for the following samples:

Sample Number	Sample Description	Date Collected
86526	Outfall 1	6/30/2009
86527	Outfall 2	6/30/2009
86528	Weir	6/30/2009

TKN and Ammonia were analyzed by Benchmark Enviroanalytical, Inc. NELAC# E84167.

Copies of the Chain(s)-of-Custody, if received, are attached to this report.

If you have any questions or comments concerning this report, please do not hesitate to contact us.

Sincerely, 1

Michael W. Palmer Vice President, Laboratory Operations

Enclosures

SunLabs, Inc.	Cover Page 1 of 1	Phone: (813) 881-9401
5460 Beaumont Center Blvd., Suite 52 Tampa, FL 33634) Unless Otherwise Noted and Where Applicable:	Email: Info@SunLabsInc.com Website: www.SunLabsInc.com
These samples were received at the proper temperature	e and were analyzed as received. The results herein relate only to the items tested o	r to the samples as received by the laboratory • This report

These samples were received at the proper temperature and were analyzed as received. The results herein relate only to the items tested or to the samples as received by the laboratory • This report shall not be reproduced except in full, without the written approval of the laboratory • Results for all solid matrices are reported on a dry weight basis • All samples will be disposed of within 45 days of the date of receipt of the samples • All samples in the body of the report are environmental samples. All results in the Quality Control (QC) section are labeled appropriately • All results meet the requirements of the NELAC standards • Footnotes are given at the end of the report • Uncertainty values are available upon request.

Report of L	aboratory Analysis
SunLabs Project Number	PSI
090701.01	Project Description
	Lee County Plant Study
	SunLabs Project Number 090701.01

SunLabs Sample Number Sample Designation	86526 Outfall 1				Matrix Date Co Date Re	llected ceived	Surfa 6/30 7/1/2	ace Water /2009 12:35 2009 10:00	
Parameters	Method	Units	Results	Dil Facto	MDL or	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Anions by Ion Chromatograp	<u>hy</u>								
Date Analyzed			07/01/2009	1				07/01/09 16:32	07/01/09 12:10
Nitrate as N	300.0	mg/L	0.21	1	0.014	0.056	14797-55-8	07/01/09 16:32	07/01/09 12:10
Ortho-phosphate as P	300.0	mg/L	0.022 U	1	0.022	0.088	14265-44-2	07/01/09 16:59	07/01/09 12:10
<u>Ammonia</u>									
Nitrogen Ammonia (as N)	350.2	mg/L	0.056 S7	1	0.005	0.02		07/07/09 13:50	
<u>Total Kieldahl Nitrogen</u>									
Date Digested	351.2		7/6/09 S7	1				07/06/09 11:00	
Total Kjeldahl Nitrogen (TKN)	351.2	mg/L	0.454	1	0.05	0.2		07/06/09 11:00	
Total Phosphorous									
Date Digested	3010		7/1/2009						07/01/09 13:00
Total Phosphorous	6010	mg/L	0.015 U	1	0.015	0.06		07/06/09 15:21	07/01/09 13:00

SunLabs Sample Number Sample Designation	86527 Outfall 2			N [[Matrix Date Co Date Re	llected ceived	Surfa 6/30/ 7/1/2	nce Water /2009 12:50 2009 10:00	
Parameters	Method	Units	Results	Dil Facto	MDL or	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Anions by Ion Chromatograp	hy								
Date Analyzed			07/01/2009	1				07/01/09 18:19	07/01/09 12:10
Nitrate as N	300.0	mg/L	0.014 U	1	0.014	0.056	14797-55-8	07/01/09 18:19	07/01/09 12:10
Ortho-phosphate as P	300.0	mg/L	0.022 U	1	0.022	0.088	14265-44-2	07/01/09 18:46	07/01/09 12:10
Ammonia									
Nitrogen Ammonia (as N)	350.2	mg/L	0.040 S7	1	0.005	0.02		07/07/09 13:50	
<u>Total Kjeldahl Nitrogen</u>									
Date Digested	351.2		7/6/09 S7	1				07/06/09 11:00	
Total Kjeldahl Nitrogen (TKN)	351.2	mg/L	0.655	1	0.05	0.2		07/06/09 11:00	
Total Phosphorous									
Date Digested	3010		7/1/2009						07/01/09 13:00
Total Phosphorous	6010	mg/L	0.015 U	1	0.015	0.06		07/06/09 15:23	07/01/09 13:00

	Report of I	Laboratory Analysis
	SunLabs Project Number	PSI
SunLabs	090701.01	Project Description
		Lee County Plant Study

SunLabs Sample Number Sample Designation	86528 Weir				N C C	Matrix Date Col Date Re	llected ceived	Surfa 6/30/ 7/1/2	ace Water /2009 13:10 2009 10:00	
Parameters		Method	Units	Results	Dil Facto	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Anions by Ion Chromatograp	hy									
Date Analyzed				07/01/2009	1				07/01/09 19:13	07/01/09 12:10
Nitrate as N		300.0	mg/L	0.24	1	0.014	0.056	14797-55-8	07/01/09 19:13	07/01/09 12:10
Ortho-phosphate as P		300.0	mg/L	0.022 U	1	0.022	0.088	14265-44-2	07/01/09 19:40	07/01/09 12:10
<u>Ammonia</u>										
Nitrogen Ammonia (as N)		350.2	mg/L	0.072 S7	1	0.005	0.02		07/07/09 13:50	
<u>Total Kieldahl Nitrogen</u>										
Date Digested		351.2		7/6/09 S7	1				07/06/09 11:00	
Total Kjeldahl Nitrogen (TKN)		351.2	mg/L	0.381	1	0.05	0.2		07/06/09 11:00	
Total Phosphorous										
Date Digested		3010		7/1/2009						07/01/09 13:00
Total Phosphorous		6010	mg/L	0.015 U	1	0.015	0.06		07/06/09 15:26	07/01/09 13:00

Report of Laboratory Analysis

SunLabs Project Number PSI

090701.01

Project Description
Lee County Plant Study

	Footnotes
*	SunLabs is not currently NELAC certified for this analyte.
/	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
MB	Method Blank
MS	Matrix Spike
MSD	Matrix Spike Duplicate
NA	Sample not analyzed at client's request.
RL	RL(reporting limit) = PQL(practical quantitation limit).
RPD	Relative Percent Difference
<i>S7</i>	This analysis performed by Benchmark EnviroAnalytical, Inc., Certification number E84167.
U	Compound was analyzed for but not detected.
V	Indicates that the analyte was detected in both the sample and the associated method blank.

Quality Control Data

090701.01

Project Number

PSI

Project Description
Lee County Plant Study

July 8, 2009

Batch No: Test: TestCode:	C9739 Anions by I 300.0	on Chromatogra	Associated Samples 86526, 86527, 86528													
Compound		Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC RPD	_imits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifiers
Parent Sample Number										86526	86526					
Nitrite as N		0.016 U	5.00	97	98	1	7	81-120	5.00	98	99	1	8	43-152		
Nitrate as N		0.014 U	5.00	103	102	1	10	80-122	5.00	103	103	0	11	42-152		
Ortho-phosphate as P		0.022 U	5.00	95	98	3	7	75-109	5.00	94	97	3	15	61-123		

Batch No: Test: TestCode:	: C9741 Associated Samples Metals by EPA Method 6010															
Compound		Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC RPD	Limits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifiers
Parent Sample Number										86529	86529					
Aluminum		0.027 I	1000	100	91	9	9	87-115	1000	106	108	2	33	0-263		
Iron		0.0023 U	1000	100	95	5	20	80-126	1000	100	101	1	55	0-289		
Phosphorous		0.015 U	10.0	95	96	1	4	82-115	10.0	96	98	2	60	0-175		

* indicates value is outside control limits for %Recovery or greater than acceptance criteria for RPD

U

Footnotes

,

Compound was analyzed for but not detected.
				SunLal	os, Inc	. Cł	nain	of	Cus	stod	y						Nº 2	2169		
Client Name:	PSI		_	SunLabs	Project	# (59	0_	10	ι. c	<u>)</u>					Project Name:	Leelou	onlypi	wetst.	
Contact:	IMCK Gall	<u>amt</u>		Bottle Typ	e	P	P	P								Project #:	756-11	-006	401	
Address:	1265C New Brilla	-Blud.		Preservati	ve	H	N									PO #:				
	Suite 102			Matrix		50	ŚŨ	\mathcal{G}				_				Alt Bill To:			0	
Phone / Fax:	239690 9967 72396	909768		Analysis /	Method	3	0	C ₂												
E-Mail :	nick.gollant@ps	lusy.com		Reque	ested	man	10950	1300	-							Due Date Requ	ested:		,	
SunLabs	Sample Description		Sample	Sample	# of	N)	Ľ,	00	~											
Sample #			Date	Time	Bottles	12	σ_{a}	ter									Approval site		-{	
86526	Dulfall		L121/19	12.35	2	X	X	X												
51657	0 ((11)		1 21 20101	1250	<u> </u>	Ϋ́		x			_	-				Remarks / Com	ments:		-	
C 638	LIDIC	·	1	1210		Ϋ́		$\overline{\mathbf{v}}$			_	-+					inents.			
00000			-	1210		1	<u> </u>	~			_		_							
											_		_							
A Capture of						<u> </u>														
					-					-		-+					_			
						<u> </u>														
			÷																	
and the second second																				
			_									\rightarrow								
																Length of Recor	d Retention if			
											·					other than 5 yea	ars:		1	
Sampler Signature	/ Date:	Printed Nam	ne / Affiliat	ion:	27					SUN UNR	.ABS ETUF	, INC.	RES	SERV	ES T 3 ANI	HE RIGHT TO B D TO RETURN L	ILL FOR UNU JNUSED SAM	SED/		
129 - sector	- dixing	Michald	5091	ant 1	1-2-4	<i>,</i>		Relin	quish	ed By	/:	999, 9469, 92		Relin	auist	ned To:	Date:	Time:		
Bottle Type Codes:		Preservative Co	des:				Į	\mathbf{X}	1	1	(n	O	[1	5 <i>Í</i>) 22	1'5(c		1	
GV = Glass Vial	GVS = Low Level Volatile Kit	H = Hydrochlori	c Acid + Ice	S = Sulfuric	Acid + Ice		Į.	11	11	1_){	~		L .	人人		20		/	
GA = Glass Amber	T = Tedlar Bag	l = Ice only		VS = MeOH	. OFW. + ice)	Relin	auish	ed By	<i>r</i> :			Relin	auist	ned To:	Date:	Time:	1	
P = Plastic	O = Other	N = Nitric Acid +	- Ice	O = Other (S	Specify)			. ;	•	2		ever.		5	1	T.S.	1/21 .	1220	/	
S = Soil Jar					,,,			÷-			- And			T+	2-1	EX	012404	18 2 - 2		
Matrix Codes:	SO = Soil	Internal Use O	niv			122		Relin	auish	ed By	<i>r</i> :			Relin	auist	ed To:	Date:	Time:	1.	
A = Air	SOL = Solid	Sample Conditi	on Upon Rec	eiot:					-		~			I.	1	$)_{0}$.	-1.1.9	1000		
DW = Drinking Water	SW = Surface Water	Custody Seals	aresent?		Y / N /MA	N			sec	L	Ex		\Box	2 ⁴	T	almer	דונשי	1000		
GW = Ground Water	W = Water (Blanks)	Shinning Bills at	tached?		ETAN INA			Relin		ed By	, r		\neg	Relin	auist	ned To:	Date:	Time [.]	· ,	
SF = Sediment	$\Omega = \Omega$ ther (Specify)	Sample contain	pre intect?					I COM	quion	cu Dy	•			1.0011	quio		Date.	1		
		Samples within	bolding times																s.	
Temp. C	5.4.	Sufficient vol	notaing unles	(FOC)	AN IND														1	
remp. 7	Kinin	Are used have	e for all analy	/5857	Y IN IG	5				540	0 Paa		t Car	S ntor D	unL:	Labs, Inc.				
Received on Ice? N / NA Are vials head-space free? Proper containers and prese				rvatives? 🤇	Phone: 813-881-9401 / F e-mail: info@SunLabsInc.com						nter B 13-88 nLab	sina., 1-94(sinc.;	1 / Fax: 813-354-4661 om www.SunLabsInc.com							
																	-	Ш		

Nick Gallant PSI 12650 New Brittany Blvd Fort Myers, FL 33907

Re:	SunLabs Project Number:	090731.02
	Client Project Description:	Lee County Plant Study

Dear Mr. Gallant:

Enclosed is the report of laboratory analysis for the following samples:

Sample Number	Sample Description	Date Collected
88195	Outfall 1	7/30/2009
88196	Outfall 2	7/30/2009
88197	Weir	7/30/2009

Ammonia was analyzed by Benchmark Enviroanalytical, Inc. NELAC# E84167.

Copies of the Chain(s)-of-Custody, if received, are attached to this report.

If you have any questions or comments concerning this report, please do not hesitate to contact us.

Sincerely, 1

Michael W. Palmer Vice President, Laboratory Operations

Enclosures

SunLabs, Inc.	Cover Page 1 of 1	Phone: (813) 881-9401
5460 Beaumont Center Blvd., Tampa, FL 33634	Suite 520 Unless Otherwise Noted and Where Applicable:	Email: Info@SunLabsInc.com Website: www.SunLabsInc.com
These samples were received at the pror	per temperature and were analyzed as received. The results herein relate only to the items tested or	to the samples as received by the laboratory • This report

These samples were received at the proper temperature and were analyzed as received. The results herein relate only to the items tested or to the samples as received by the laboratory • This report shall not be reproduced except in full, without the written approval of the laboratory • Results for all solid matrices are reported on a dry weight basis • All samples will be disposed of within 45 days of the date of receipt of the samples • All samples in the body of the report are environmental samples. All results in the Quality Control (QC) section are labeled appropriately • All results meet the requirements of the NELAC standards • Footnotes are given at the end of the report • Uncertainty values are available upon request.

	Report of L	aboratory Analysis
	SunLabs Project Number	PSI
Sunlabs	090731.02	Project Description
		Lee County Plant Study

SunLabs Sample Number Sample Designation	88195 Outfall 1			ר ו ו	Matrix Date Col Date Re	llected ceived	Surfa 7/30, 7/31,	ce Water /2009 18:10 /2009 09:45	
Parameters	Method	Units	Results	Dil Facto	MDL or	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Anions by Ion Chromatograp	hy								
Date Analyzed	-		07/31/2009	1				07/31/09 22:13	07/31/09 12:00
Nitrate as N	300.0	mg/L	0.29	1	0.014	0.056	14797-55-8	07/31/09 22:13	07/31/09 12:00
Ortho-phosphate as P	300.0	mg/L	0.022 U	1	0.022	0.088	14265-44-2	07/31/09 22:13	07/31/09 12:00
<u>Ammonia</u>									
Nitrogen Ammonia (as N)	350.2	mg/L	0.162	1	0.005	0.020		08/07/09 16:00	
<u>Total Kjeldahl Nitrogen</u>									
Date Digested	351.2		8/4/09 S7	1				08/04/09 10:00	
Total Kjeldahl Nitrogen (TKN)	351.2	mg/L	0.445	1	0.05	0.2		08/04/09 10:00	
Total Phosphorous									
Date Digested	3010		8/3/2009						08/03/09 09:30
Total Phosphorous	6010	mg/L	0.015 U	1	0.015	0.06		08/06/09 14:50	08/03/09 09:30

SunLabs Sample Number Sample Designation	88196 Outfall 2			N D D	latrix ate Co ate Re	llected ceived	Surfa 7/30, 7/31,	nce Water /2009 18:25 /2009 09:45	
Parameters	Method	Units	Results	Dil Facto	MDL r	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Anions by Ion Chromatograp	<u>hy</u>								
Date Analyzed			07/31/2009	1				07/31/09 22:40	07/31/09 12:00
Nitrate as N	300.0	mg/L	0.12	1	0.014	0.056	14797-55-8	07/31/09 22:40	07/31/09 12:00
Ortho-phosphate as P	300.0	mg/L	0.022 U	1	0.022	0.088	14265-44-2	07/31/09 22:40	07/31/09 12:00
Ammonia									
Nitrogen Ammonia (as N)	350.2	mg/L	0.042	1	0.005	0.020		08/07/09 16:00	
<u>Total Kjeldahl Nitrogen</u>									
Date Digested	351.2		8/4/09 S7	1				08/04/09 10:00	
Total Kjeldahl Nitrogen (TKN)	351.2	mg/L	0.587	1	0.05	0.2		08/04/09 10:00	
Total Phosphorous									
Date Digested	3010		8/3/2009						08/03/09 09:30
Total Phosphorous	6010	mg/L	0.015 U	1	0.015	0.06		08/06/09 14:52	08/03/09 09:30

	Report of L	aboratory Analysis
	SunLabs Project Number	PSI
Sunlabs	090731.02	Project Description
		Lee County Plant Study

SunLabs Sample Number Sample Designation	88197 Weir				N C C	Matrix Date Co Date Re	llected ceived	Surfa 7/30, 7/31,	ce Water /2009 18:45 /2009 09:45	
Parameters		Method	Units	Results	Dil Facto	MDL r	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Anions by Ion Chromatograph	<u>ıv</u>									
Date Analyzed				08/01/2009	1				08/01/09 00:00	07/31/09 12:00
Nitrate as N		300.0	mg/L	0.27	1	0.014	0.056	14797-55-8	08/01/09 00:00	07/31/09 12:00
Ortho-phosphate as P		300.0	mg/L	0.022 U	1	0.022	0.088	14265-44-2	08/01/09 00:00	07/31/09 12:00
<u>Ammonia</u>										
Nitrogen Ammonia (as N)		350.2	mg/L	0.031	1	0.005	0.020		08/07/09 16:00	
<u>Total Kjeldahl Nitrogen</u>										
Date Digested		351.2		8/4/09 S7	1				08/04/09 10:00	
Total Kjeldahl Nitrogen (TKN)		351.2	mg/L	0.444	1	0.05	0.2		08/04/09 10:00	
Total Phosphorous										
Date Digested		3010		8/3/2009						08/03/09 09:30
Total Phosphorous		6010	mg/L	0.015 U	1	0.015	0.06		08/06/09 14:54	08/03/09 09:30

Report of Laboratory Analysis

SunLabs Project Number PSI

090731.02

Project Description
Lee County Plant Study

	Footnotes
*	SunLabs is not currently NELAC certified for this analyte.
1	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
MB	Method Blank
MS	Matrix Spike
MSD	Matrix Spike Duplicate
NA	Sample not analyzed at client's request.
RL	RL(reporting limit) = PQL(practical quantitation limit).
RPD	Relative Percent Difference
<i>S7</i>	This analysis performed by Benchmark EnviroAnalytical, Inc., Certification number E84167.
U	Compound was analyzed for but not detected.
V	Indicates that the analyte was detected in both the sample and the associated method blank.

Quality Control Data

090731.02

Associated Samples

Project Number

PSI

Project Description
Lee County Plant Study

August 11, 2009

Batch No: D1069 Test: Anions by Ion Chromatography TestCode: 300.0 Compound Blank LCS LCSD RPD QC Limits Parent Sample Number Fluoride 0.016 U 5.00 91 98 7* 3 84-11'										Associated Samples 88195, 88196, 88197									
Compound		Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC RPD	Limits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifiers			
Parent Sample Number										88195	88195								
Fluoride		0.016 U	5.00	91	98	7*	3	84-117	5.00	99	97	2	13	24-163					
Chloride		0.045 U	10.00	105	104	1	3	85-116	10.00	22	23	4	15	0-207					
Nitrite as N		0.016 U	5.00	102	100	2	7	81-120	5.00	98	101	3	8	43-152					
Nitrate as N		0.014 U	5.00	100	101	1	10	80-122	5.00	101	102	1	11	42-152					
Ortho-phosphate as P		0.022 U	5.00	98	95	3	7	75-109	5.00	93	100	7	15	61-123					
Sulfate		0.036 U	25.00	101	100	1	5	91-114	25.00	103	103	0	21	0-236					

Batch No: D1078

Test:	Metals by E	EPA Method 6010							88	3195, 88	196, 8819	1				
TestCode:	6010-L															
Compound		Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC RPD	Limits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifiers
Parent Sample Number										88184	88184					
Arsenic		0.0048 U	1000	101	101	0	8	88-112	1000	104	102	2	8	78-117		
Barium		0.0027 I	1000	110	111	1	10	87-116	1000	106	109	3	11	70-120		
Cadmium		0.0006 U	1000	104	102	2	3	87-110	1000	104	103	1	10	73-116		
Chromium		0.0035 U	1000	101	101	0	10	91-112	1000	98	98	0	4	70-122		
Lead		0.0044 U	1000	104	106	2	8	87-113	1000	102	101	1	10	64-118		
Manganese		0.0012 I	1000	101	103	2	5	91-112	1000	98	94	4	9	76-113		
Phosphorous		0.015 U	10.0	98	99	1	4	82-115	10.0	96	96	0	60	0-175		
Selenium		0.0047 U	1000	104	104	0	4	88-110	1000	105	105	0	6	81-114		
Silver		0.0033 U	1000	104	104	0	10	85-111	1000	100	100	0	6	74-114		

* indicates value is outside control limits for %Recovery or greater than acceptance criteria for RPD

	Footnotes									
MSA	The results of the matrix spike are out of range due to a high amount of target analyte(s) in the original sample.									
Q1	The result for the spike(s) were not within acceptable control limits. However, the LCS data was within acceptable control limits. Therefore the poor spike results can be attributed to matrix.									
Q3	The result was not within acceptable control limits.									
U	Compound was analyzed for but not detected.									

	موسر (۲۵۵۵) و می می در این می دور می در در می در در می در می مرابع																	
				SunLa	bs, Inc	. Ch	ain	n of C	Custo	dy					No	21665		
Client Name:	Pol			SunLab	s Project	#	0	70	131.	٥]	2			Project Nam	e: Lee (ou	Chulu		
Contact:	Nick Gallont			Bottle Typ	be	12	P	P						Project	#:	16006 8		
Address:	12650 New Britte	my Sur.		Preservat	ive	5	M	1	_					PO	#:			
	Juite 102			Matrix S			SW	Sev				_		Alt Bill T	o:			
Phone / Fax:	631-6-0-99161	<u> </u>		Analysis /	Method	w)	8	00	1	1 1			1					
E-Mail :	nex.gulartepsiu	Xq. rom		Requ	ested	Ż	سکر ای	E				ļ						
Suntake	Sample Description		Sample	Sample	# of	Z	-	<u>ل</u> ان ۳						Due Date Rec	quested:			
Sample #	Sample Description		Date	Time	# 01 Bottles	¥.	1	Ξ		!					A			
WIG5	04611#1		7-20-09	1810	Z				-+	+					eApproval site			
25196	Dut 6011 #2		7-30-09	1425	3	1	V	5		+-+				Remarks / Co	mmonte:			
ବିହାଦୀ	Voir		7-30-09	1845	3	~	-	-			-+	-+	+		minerus.			
											-	-+	+	-				
										++	-	-		-				
												-				1		
		•												-				
C. Martine C.																		
																1		
	•													Length of Rec	ord Retention if			
						- A - 1		10.77 700000						other than 5 ye	ears:			
Sampler Signature	e / Date:	Printed Na	me / Affiliat	tion:					SUN	ILABS,	INC.	RESE	RVES	THE RIGHT TO	BILL FOR UNL	JSED/		
if est	1-30-01	NickG	allant 1	TOT.					UNF	ETUR	NED	SAMP	LES A	ND TO RETURN	UNUSED SAN	IPLES.		
Rotte Time Order				_				Reling	uished B	y:		R	elinqui	shed To:	Date:	Time:		
Bottle Type Codes:		Preservative C	odes:					XÃ	1+4	Vr	10	2	114	52	7/24/09	1700		
GV = Glass Vial	GVS = Low Level Volatile Kit	H = Hydrochid	ric Acid + Ice	S = Sulfunc	Acid + Ice		No. of Concession, Name	Deline	1 UC						1-17-1	. /00		
GA = Glass Amber	1 = 1 ediar Bag	N = Nitrio Acid	+ 100		I, UFW, + Ice			Relind	uisnea B	y:		R	elinqui	shed to:	Date:	Time:		
P = Plastic	0 = Other	N - NITH ACID	+ ice	U = Other (Specity)			UK.	5			-	15-2	and the second s	1-21-01	100		
Matrix Codes:	SO = Soil	Internal Use	mly S	r sarara	Maria I.	<u>199</u> 9	1993	Reling		1/20			olingui	shad To:	Deter	Time		
A = Air	SOL = Solid	Sample Condi	tion Upon Rec	eint					aloneu D	1 0)	-		einiquis ‴\j≏		Date.	lime:		
DW = Drinking Water	SW = Surface Water	Custody Seals	present?	6.5	YINI)		12	And And And			h	Edta	* · · ·	7-30-07	1750		
GW = Ground Water	W = Water (Blanks)	Shipping Bills	attached?					Reling	uished B	V.			elinguie	shed To:	Date: t	Timo:		
SE = Sediment	O = Other (Specify)	Sample contai	ners intact?												lime:			
	2 0	Samples withi	n holding time:	\$7	Q IN / NA			15	2 de	¥		C	M	M	11/10	1745		
Temp: _ Received on	<u> </u>	Sufficient volu Are vials head Proper contair	me for all anal -space free? ners and prese	Ilyses? <u>Q/ N /NA</u> <u>Y / N @</u> ervatives? <u>N /NA</u>					SunLabs, Inc. 5460 Beaumont Center Blvd., Suite 520, Tampa, Florida 33634 Phone: 813-881-9401 / Fax: 813-354-4661							34		

Nick Gallant PSI 12650 New Brittany Blvd Suite 102 Fort Myers, FL 33907

Re:	SunLabs Project Number:	090901.03
	Client Project Description:	Lee County Plant Study

Dear Mr. Gallant:

Enclosed is the report of laboratory analysis for the following samples:

Sample Number	Sample Description	Date Collected
89380	Outfall 1	8/31/2009
89381	Outfall 2	8/31/2009
89382	Weir	8/31/2009

Ammonia was analyzed by Benchmark Enviroanalytical, Inc. NELAC# E84167.

Copies of the Chain(s)-of-Custody, if received, are attached to this report.

If you have any questions or comments concerning this report, please do not hesitate to contact us.

Sincerely,

Michael W. Palmer Vice President, Laboratory Operations

Enclosures

SunLabs, Inc.	Cover Page 1 of 1	Phone: (813) 881-9401
5460 Beaumont Center Blvd., Suite Tampa, FL 33634	520 Unless Otherwise Noted and Where Applicable:	Email: Info@SunLabsInc.com Website: www.SunLabsInc.com
These complex were received at the proper temp	and were analyzed as received. The recults herein relate only to the items tested or	to the complex or received by the leheratory a This report

These samples were received at the proper temperature and were analyzed as received. The results herein relate only to the items tested or to the samples as received by the laboratory • This report shall not be reproduced except in full, without the written approval of the laboratory • Results for all solid matrices are reported on a dry weight basis • All samples will be disposed of within 45 days of the date of receipt of the samples • All samples in the body of the report are environmental samples. All results in the Quality Control (QC) section are labeled appropriately • All results meet the requirements of the NELAC standards • Footnotes are given at the end of the report • Uncertainty values are available upon request.

	Report of L	aboratory Analysis
	SunLabs Project Number	PSI
SunLabs	090901.03	Project Description
		Lee County Plant Study

SunLabs Sample Number Sample Designation	89380 Outfall 1				Matrix Date Co Date Re	llected ceived	Surfa 8/31 9/1/2	ace Water /2009 14:10 2009 10:10	
Parameters	Method	l Units	Results	Dil Facto	MDL or	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Anions by Ion Chromatograp	hy								
Date Analyzed			09/01/2009	1				09/01/09 19:37	09/01/09 12:50
Nitrate as N	300.0	mg/L	0.28	1	0.014	0.056	14797-55-8	09/01/09 19:37	09/01/09 12:50
Ortho-phosphate as P	300.0	mg/L	0.022 U	1	0.022	0.088	14265-44-2	09/01/09 19:37	09/01/09 12:50
<u>Ammonia</u>									
Nitrogen Ammonia (as N)	350.2	mg/L	0.130	1	0.005	0.020		09/02/09 11:51	
<u>Total Kjeldahl Nitrogen</u>									
Date Digested	351.2		9/8/09 S7	1				09/08/09 10:00	
Total Kjeldahl Nitrogen (TKN)	351.2	mg/L	0.646	1	0.05	0.2		09/08/09 10:00	
Total Phosphorous									
Date Digested	3010		9/2/2009						09/02/09 09:15
Total Phosphorous	6010	mg/L	0.043 I	1	0.015	0.06		09/03/09 11:48	09/02/09 09:15

SunLabs Sample Number Sample Designation	89381 Outfall 2			Matrix Date Collected Date Received			Surfa 8/31/ 9/1/2		
Parameters	Method	Units	Results	Dil Facto	MDL r	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Anions by Ion Chromatograp	hy								
Date Analyzed			09/01/2009	1				09/01/09 20:04	09/01/09 12:50
Nitrate as N	300.0	mg/L	0.014 U	1	0.014	0.056	14797-55-8	09/01/09 20:04	09/01/09 12:50
Ortho-phosphate as P	300.0	mg/L	0.022 U	1	0.022	0.088	14265-44-2	09/01/09 20:04	09/01/09 12:50
<u>Ammonia</u>									
Nitrogen Ammonia (as N)	350.2	mg/L	0.083 I	1	0.005	0.020		09/02/09 11:51	
<u>Total Kjeldahl Nitrogen</u>									
Date Digested	351.2		9/8/09 S7	1				09/08/09 10:00	
Total Kjeldahl Nitrogen (TKN)	351.2	mg/L	0.771	1	0.05	0.2		09/08/09 10:00	
Total Phosphorous									
Date Digested	3010		9/2/2009						09/02/09 09:15
Total Phosphorous	6010	mg/L	0.015 U	1	0.015	0.06		09/03/09 11:50	09/02/09 09:15

	Report of L	aboratory Analysis
	SunLabs Project Number	PSI
SunLabs	090901.03	Project Description
		Lee County Plant Study

SunLabs Sample Number Sample Designation	89382 Weir				N C C	Aatrix Date Co Date Re	llected ceived	Surfa 8/31 9/1/2		
Parameters		Method	Units	Results	Dil Facto	MDL or	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Anions by Ion Chromatograp	hy									
Date Analyzed				09/01/2009	1				09/01/09 20:30	09/01/09 12:50
Nitrate as N		300.0	mg/L	0.21	1	0.014	0.056	14797-55-8	09/01/09 20:30	09/01/09 12:50
Ortho-phosphate as P		300.0	mg/L	0.022 U	1	0.022	0.088	14265-44-2	09/01/09 20:30	09/01/09 12:50
<u>Ammonia</u>										
Nitrogen Ammonia (as N)		350.2	mg/L	0.485	1	0.005	0.020		09/02/09 11:51	
<u>Total Kjeldahl Nitrogen</u>										
Date Digested		351.2		9/8/09 S7	1				09/08/09 10:00	
Total Kjeldahl Nitrogen (TKN)		351.2	mg/L	0.607	1	0.05	0.2		09/08/09 10:00	
Total Phosphorous										
Date Digested		3010		9/2/2009						09/02/09 09:15
Total Phosphorous		6010	mg/L	0.019 I	1	0.015	0.06		09/03/09 11:53	09/02/09 09:15

Report of Laboratory Analysis

SunLabs Project Number PSI

090901.03

Project Description
Lee County Plant Study

	Footnotes	
*	SunLabs is not currently NELAC certified for this analyte.	
1	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.	
LCS	Laboratory Control Sample	
LCSD	Laboratory Control Sample Duplicate	
MB	Method Blank	
MS	Matrix Spike	
MSD	Matrix Spike Duplicate	
NA	Sample not analyzed at client's request.	
RL	RL(reporting limit) = PQL(practical quantitation limit).	
RPD	Relative Percent Difference	
<i>S7</i>	This analysis performed by Benchmark EnviroAnalytical, Inc., Certification number E84167.	
U	Compound was analyzed for but not detected.	
V	Indicates that the analyte was detected in both the sample and the associated method blank.	

Phosphorous

Quality Control Data

090901.03

Project Number

PSI

Project Description Lee County Plant Study

September 11, 2009

Batch No:	D1398								A	ssociated	d Samples	6				
Test:	Anions by	lon Chromatograph		8	89380, 89381, 89382											
TestCode:	300.0	300.0														
Compound		Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC RPD	Limits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifiers
Parent Sample Number										89374	89374					
Chloride		0.045 U mg/L	5.00	91	90	1	3	90-110	5.00	129	127	2	15	0-207		
Nitrite as N		0.016 U mg/L	5.00	103	103	0	7	90-110	5.00	102	102	0	8	43-152		
Nitrate as N		0.014 U mg/L	5.00	104	104	0	10	90-110	5.00	103	103	0	11	42-152		
Ortho-phosphate as P		0.022 U mg/L	5.00	99	101	2	7	90-110	5.00	92	95	3	15	61-123		
Batch No:	D1404								A	ssociated	d Samples	5				
Test:	Metals by I	EPA Method 6010							8	9380, 893	381, 8938	2				
TestCode:	6010-L															
Compound		Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC RPD	Limits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifiers
Parent Sample Number										89380	89380					
Iron		0.0023 U mg/L	1000	101	96	5	20	80-126	1000	101	102	1	55	0-289		

* indicates value is outside control limits for %Recovery or greater than acceptance criteria for RPD

mg/L

10.0

106

105

0.0023 U mg/L

0.015 U

	Footnotes
1	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
Q1	The result for the spike(s) were not within acceptable control limits. However, the LCS data was within acceptable control limits. Therefore the poor spike results can be attributed to matrix.
U	Compound was analyzed for but not detected.

1

4

82-115

10.0 103 105

60

0-175

2

				SunLal	bs, Inc.	. Ch	ain	of	Cus	tody						Nº :	22189	
Client Name:	PSI			SunLabs	s Project	# (990	ð 5	01	С	90	90	1.1	03	Project Name:	Lee 10	121 Plan	57-0Y
Contact:	MICK GALLAT	f	x .	Bottle Typ	e										Project #:			
Address:	12650 Ne Baltony	Bulsi	, KZ	Preservati	ive										PO #:			
				Matrix		41	40	GW	` ´						Alt Bill To:			
Phone / Fax:	2>1690-267/259.	-690-996	<u> </u>	Analysis /	Method	2		5			-							
E-Mail :	nick-gallant eps	iusa.re	~1	Reque	ested	2-17	march	AC.							Due Dete Deeu	a at-ad-		-
Cupl abo			Germale	Correla	# . 6	10	1								Due Date Requ	ested:		
Suncaus Somelo #	Sample Description		Sample	Sample	# of	t.	Ń	n d								A		-
Sample #			Uate (1)	Time	Bottles	\mathbf{X}	t	Æ								Approval site		
0000	()n/ lall # 1		<u>4/3/01</u>	1910	2		V	<i>V</i>							Cash rates	<u> </u>		-
02021	DAttall HL		415109	1460	_ >	V	~			_	_				Remarks / Com	ments:		
221329	leir		8/31/04	1440		~	V	~			_	<u> </u>						
										_								1
											_							<
																	-	
AND THE REAL PROPERTY OF			,-															
															Length of Reco	rd Retention	f	1
							-					-			other than 5 yea	ars:		
Sampler Signature	Date:	Printed Nar	ne / Affiliat	tion:				S. B.M.	1990	SUNLA	BS. INC	C. RE	SERV	ES T	HE RIGHT TO B	HLL FOR UN	USED/	
1	Q UZILIO	ALL C	11	125					1	INRET	URNE		NPLES	S ANI	TO RETURN I	JNUSED SA	MPLES.	
	6/ 5//01	14-a (n	allan /	15-11				Relin	auishe	d Bv:	<u>- 25</u> 26 <u>20 The COT</u> HO	556 <u>27,5582</u> 3	Relin	auist	ned To:	Date:	Time:	
Bottle Type Codes:		Preservative C	odes:					N A	1 1	í.			1		15	Novil	1700	
GV = Glass Vial	GVS = Low Level Volatile Kit	H = Hydrochlo	ric Acid + Ice	S = Sulfurio	Acid + Ice		1	$ \rangle $	11	\hat{x})(P.Y			11		$\forall \forall (l) p$	100	
GA ≈ Glass Amber	T = Tedlar Bag						ž.,	Relin	nuishe	d By:	/		Relin		ned To:	Date	Time	1
P = Plastic	$\Omega = \Omega$ ther	N = Nitric Acid	+ 100	O = Other (S)	Reactiful			/	quisite	Ğ.			27 I	, ,		CATTA - CO	1. 34	
S = Soil (ar		N - NIELC ACIU	+ ice		specity)			K. me	-	9			13	$\mathbb{Z}_{\mathcal{F}}$		DD110	1 2 - 1	
Matrix Codes:		10003.44030	55 (245 <u>24</u> 5	A Station Rolling			l.	Polin	- vioba	d Dur			Polin		ad To:	Doth: 1	Time:	-
A = A:-		internai Use C	тіу					Rein	quisne	ч Бу.			Rein	iquisi		al.		
	SOL = Solid	Sample Condit	<u>ion Upon Rec</u>	<u>eipt:</u>	·)			100	101	(()	λU	uper	FILLO		
Dw = Drinking Water	Svv = Surface Water	Custody Seals	present?			L							$\underline{\mathcal{V}}$	<u>v</u> -			J =	-
GW = Ground Water	nd Water W = Water (Blanks) Shipping Bills attached?				NY N/NA	-		Relin	quishe	d By:			Relin	quist	ned Io:	Date:	l lime:	
SE = Sediment	O = Other (Specify)	Sample contain	ners intact?			-												
-	2.3	Samples within	holding times	i? (<u>9/N/NA</u>	-										L		-
lemp: _	<u>~0</u>	Sufficient volur	ne for all analy	yses? (DIN/NA	-							S	unL	abs, Inc.		5	
_	- (A)	Are vials head	space free?		Y / N (NA	2				5460	Beaumo	ont Ce	enter E	Blvd.,	Suite 520, Tamp	a, Florida 33	634	
Received on I	ce? (<u>Y// N / NA</u>	Proper contain	ers and prese	rvatives?	J'N INA	-				e-	Pho nail: inf	one: 8 o@Si	intab	1-94(slnc.	com www.Sun	Labsinc.com		

Nick Gallant PSI 12650 New Brittany Blvd Suite 102 Fort Myers, FL 33907

Re:	SunLabs Project Number:	090922.03
	Client Project Description:	Lee County Plant Study

Dear Mr. Gallant:

Enclosed is the report of laboratory analysis for the following samples:

Sample Number	Sample Description	Date Collected
90464	Outfall 1	9/21/2009
90465	Outfall 2	9/21/2009
90466	Weir	9/21/2009

Ammonia was analyzed by Benchmark Enviroanalytical, Inc. NELAC# E84167.

Copies of the Chain(s)-of-Custody, if received, are attached to this report.

If you have any questions or comments concerning this report, please do not hesitate to contact us.

Sincerely,

Michael W. Palmer Vice President, Laboratory Operations

Enclosures

SunLabs, Inc.	Cover Page 1 of 1	Phone: (813) 881-9401
5460 Beaumont Center Blvd., Suite 52 Tampa, FL 33634) Unless Otherwise Noted and Where Applicable:	Email: Info@SunLabsInc.com Website: www.SunLabsInc.com
These samples were received at the proper temperature	e and were analyzed as received. The results herein relate only to the items tested o	r to the samples as received by the laboratory • This report

These samples were received at the proper temperature and were analyzed as received. The results herein relate only to the items tested or to the samples as received by the laboratory • This report shall not be reproduced except in full, without the written approval of the laboratory • Results for all solid matrices are reported on a dry weight basis • All samples will be disposed of within 45 days of the date of receipt of the samples • All samples in the body of the report are environmental samples. All results in the Quality Control (QC) section are labeled appropriately • All results meet the requirements of the NELAC standards • Footnotes are given at the end of the report • Uncertainty values are available upon request.

	Report of L	aboratory Analysis.		
	SunLabs Project Number	PSI		
Sunlabs	090922.03	Project Description		
		Lee County Plant Study		

SunLabs Sample Number Sample Designation	90464 Outfall 1			N [[Matrix Date Col Date Re	llected ceived	Surfa 9/21, 9/21,	nce Water /2009 17:05 /2009 18:45	
Parameters	Method	Units	Results	Dil Facto	MDL or	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Anions by Ion Chromatograp	hy								
Date Analyzed	-		9/23/2009	1				09/23/09 08:12	09/22/09 12:15
Nitrate as N	300.0	mg/L	0.27	1	0.014	0.056	14797-55-8	09/23/09 08:12	09/22/09 12:15
Ortho-phosphate as P	300.0	mg/L	0.022 U	1	0.022	0.088	14265-44-2	09/23/09 08:12	09/22/09 12:15
<u>Ammonia</u>									
Nitrogen Ammonia (as N)	350.2	mg/L	0.094	1	0.005	0.020		09/28/09 12:25	
<u>Total Kjeldahl Nitrogen</u>									
Date Digested	351.2		9/30/09 S7	1				09/30/09 10:00	
Total Kjeldahl Nitrogen (TKN)	351.2	mg/L	0.649	1	0.05	0.2		09/30/09 10:00	
Total Phosphorous									
Date Digested	3010		9/23/2009						09/23/09 09:00
Total Phosphorous	6010	mg/L	0.015 U	1	0.015	0.06		09/23/09 18:47	09/23/09 09:00

	Report of L	aboratory Analysis
	SunLabs Project Number	PSI
SunLabs	090922.03	Project Description
		Lee County Plant Study

SunLabs Sample Number Sample Designation	90465 Outfall 2			N C C	Aatrix Date Co Date Re	llected ceived	Surfa 9/21 9/21	ace Water /2009 17:15 /2009 18:45	
Parameters	Method	Units	Results	Dil Facto	MDL or	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Anions by Ion Chromatograp	ny								
Date Analyzed			9/23/2009	1				09/23/09 08:38	09/22/09 12:15
Nitrate as N	300.0	mg/L	0.014 U	1	0.014	0.056	14797-55-8	09/23/09 08:38	09/22/09 12:15
Ortho-phosphate as P	300.0	mg/L	0.022 U	1	0.022	0.088	14265-44-2	09/23/09 08:38	09/22/09 12:15
Ammonia									
Nitrogen Ammonia (as N)	350.2	mg/L	0.092	1	0.005	0.020		09/28/09 12:25	
Total Kjeldahl Nitrogen									
Date Digested	351.2		9/30/09 S7	1				09/30/09 10:00	
Total Kjeldahl Nitrogen (TKN)	351.2	mg/L	0.798	1	0.05	0.2		09/30/09 10:00	
Total Phosphorous									
Date Digested	3010		9/23/2009						09/23/09 09:00
Total Phosphorous	6010	mg/L	0.015 U	1	0.015	0.06		09/23/09 18:49	09/23/09 09:00

	Report of L	aboratory Analysis
	SunLabs Project Number	PSI
Sunlabs	090922.03	Project Description
		Lee County Plant Study

SunLabs Sample Number Sample Designation	90466 Weir				N C C	Matrix Date Co Date Re	llected ceived	Surfa 9/21, 9/21,	nce Water /2009 17:30 /2009 18:45	
Parameters		Method	Units	Results	Dil Facto	MDL r	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Anions by Ion Chromatograp	hy									
Date Analyzed				9/23/2009	1				09/23/09 09:05	09/22/09 12:15
Nitrate as N		300.0	mg/L	0.27	1	0.014	0.056	14797-55-8	09/23/09 09:05	09/22/09 12:15
Ortho-phosphate as P		300.0	mg/L	0.022 U	1	0.022	0.088	14265-44-2	09/23/09 09:05	09/22/09 12:15
Ammonia										
Nitrogen Ammonia (as N)		350.2	mg/L	0.070	1	0.005	0.020		09/28/09 12:25	
<u>Total Kjeldahl Nitrogen</u>										
Date Digested		351.2		9/30/09 S7	1				09/30/09 10:00	
Total Kjeldahl Nitrogen (TKN)		351.2	mg/L	0.566	1	0.05	0.2		09/30/09 10:00	
Total Phosphorous										
Date Digested		3010		9/23/2009						09/23/09 09:00
Total Phosphorous		6010	mg/L	0.015 U	1	0.015	0.06		09/23/09 18:52	09/23/09 09:00

Report of Laboratory Analysis

SunLabs Project Number PSI

090922.03

Project Description
Lee County Plant Study

	Footnotes
*	SunLabs is not currently NELAC certified for this analyte.
1	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
MB	Method Blank
MS	Matrix Spike
MSD	Matrix Spike Duplicate
NA	Sample not analyzed at client's request.
RL	RL(reporting limit) = PQL(practical quantitation limit).
RPD	Relative Percent Difference
<i>S7</i>	This analysis performed by Benchmark EnviroAnalytical, Inc., Certification number E84167.
U	Compound was analyzed for but not detected.
V	Indicates that the analyte was detected in both the sample and the associated method blank.

Quality Control Data

090922.03

Project Number

PSI

Project Description
Lee County Plant Study

October 2, 2009

Batch No:	D1596									Associated	d Samples	5				
Test:	Anions by	lon Chromatogra	phy						C	90464, 904	465, 9046	6				
TestCode:	300.0															
Compound		Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC RPD	Limits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifiers
Parent Sample Number										90464	90464					
Fluoride		0.016 U	5.0	98	100	2	3	90-110	5.0	103	102	1	6	80-120		
Chloride		0.045 U	5.0	90	91	1	3	90-110	5.0	43*	40 *	7*	6	80-120		
Nitrite as N		0.016 U	5.0	100	103	3	7	90-110	5.0	107	106	1	8	80-120		
Bromide		0.021 U	5.0	96	97	1	7	90-110	5.0	102	103	1	6	80-120		
Nitrate as N		0.014 U	5.0	101	103	2	10	90-110	5.0	103	106	3	11	80-120		
Ortho-phosphate as P		0.022 U	5.0	92	95	3	7	90-110	5.0	94	96	2	15	80-120		
Sulfate		0.036 U	5.0	91	96	5	5	90-110	5.0	114	106	7	20	80-120		
Batch No:	D1607									Associated	d Samples	6				
Test:	Total Phos	phorous							¢	90464, 904	465, 9046	6				
TestCode:	TP-w-6010															
Compound		Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC RPD	Limits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifiers
Parent Sample Number										90464	90464					
Date Digested		₹/23/2009 U														
Total Phosphorous		0.015 U	10.0	91	91	0	2	89-111	10.0	92	93	1*	0	0-221		
Total Phosphate as P		0.046 U														

* indicates value is outside control limits for %Recovery or greater than acceptance criteria for RPD

Footnotes

U

Compound was analyzed for but not detected.

		SunLabs, Inc. Chain of Custody													Nº 2	2459			
				•			∂°	70	92	າລ	С)3	,						. 1 .
Client Name:	Ruch Caller			SunLab	s Project	#				<u>, v</u> ,	•	-				Project Name	: <u>Lee Lour</u>	the Man St	udig
Contact:	176Ed No 15011	R		Bottle Typ		1-	1	1-								Project #	: <u> </u>	006	
Address.	Chine 102 EN	ET 22017		Preservat		C.A.	Ú,	N			-						÷		
Phone / Fax:	270-690-0067 /4	01-9765	/	Analysia /	Mathad	_ V V.				_									
FILITE / Fax.	a le autre de de	50 00		Pogu	netrod	ري ري	$-i\langle \cdot \rangle$												
	Mirk gallarie psiz	<u>104.104</u> .		Requ	esteu	0.00	14	30]						Due Date Requ	uested:		
SunLabs	Sample Description		Sample	Sample	# of	1	2	1.1											
Sample #	/ I / I		Date	Time	Bottles	- 0	×	· · · · ·								FDEP Pre	Approval site		
gotter	Outfall #1		9-21-9	4:00	3	~	V	~								Cash rate	S .		
gaulet	Outfall #2		2-21-09	1. 15	3		-				_					Remarks / Con	nments:		
goulde	Weir		9-21-09	7:30	3	7	-	-								1			
$\mathbf{x} = \mathbf{x}$										_	_					1			
																1			
				•												1			
											_		_			1		1. A A A A A A A A A A A A A A A A A A A	
																· ·			
1													- 1						
																1			
											- 1		_	_		1			
											-	_				Length of Reco	ord Retention if		
																other than 5 ye	ars:		
Sampler Signatur	e / Date:	Printed Nar	ne / Affiliat	ion:					5	SUNL/	ABS	INC	RES	ERVE	ES T	HE RIGHT TO E	BILL FOR UNU	ISED/	
il el	2 - 9-21-09	11.1.1	11	. 11	2cT				ι	JNRE	TUR	NED	SAM	PLES	AN	D TO RETURN	UNUSED SAM	PLES.	6
		14 cholas	suglic	~+ /1	1			Relin	quishe	d By:	<u> </u>	Descares.v	AND	Relind	quist	ned To:	Date:	Time:	<u> </u>
Bottle Type Codes:		Preservative Co	odes:				,	-Y	h1	21	1		- 1	1	.[)~	alere.	1233	a a
GV = Glass Vial	GVS = Low Level Volatile Kit	H = Hydrochlor	ic Acid + Ice	S = Sulfuric	Acid + Ice		(au	1	ne)	L	11	1-	\sim	9/18/07	1200	6
GA = Glass Amber	T = Tedlar Bag	I = Ice only		VS = MeOH	l, OFW, + Ice			Relin	quishe	d ₿y∤	$\overline{\mathbf{x}}$			Relino	quist	ned To:	Date:	Time:	6
P = Plastic	O = Other	N = Nitric Acid	+ Ice	O = Other (S	Specify)			é		Ľ	-	and the state of the state of the		Fa	1	E	971-00	1045	- with
S = Soil Jar								A Start		مرجب				16	AL	.7	1-21-5 1	1.0.13	or l
Matrix Codes:	SO = Soil	Internal Use C	iniy				1	Relin	quishe	d By:	,			Relind	luist	ned To:	Date: 1	Time:	ù,
A = Air	SOL = Solid	Sample Condit	ion Upon Rec	<u>eipt:</u>	1	٦.		D,	d	~ ~			ł	70	1.0	had	9/22/m	NUS	S i
DW = Drinking Water	SW = Surface Water	Custody Seals	istody Seals present? <u>Y / N ANA</u>						m	IX.			Y I	1	pl	1 Jac	100000		6
GW = Ground Water	W = Water (Blanks)	Shipping Bills a	ping Bills attached?						quishe	d By:				Relind	quist	ned To:	Date:	Time:	2
SE = Sediment	O = Other (Specify)	Sample contain	ntainers intact?																с Х
	5	Samples within	Samples within holding times?																-
Temp:	<u>0.</u>	Sufficient volur	ne for all analy	/ses? (VN INA	<u>.</u>								S	ınl :	abs. Inc			
	\cap	Are vials head-	space free?		YINKA)				5460	Bea	umor	nt Cer	nter Bl	lvd.,	Suite 520, Tam	oa, Florida 336	34	
Received on	Ice? Y/N/NA	Proper contain	ers and prese	vatives?	(Y IN INA	4						Phor	ne: 81	3-881	-94()1 / Fax: 813-35	4-4661		
e-mail: info@SunLabsInc.com www.Sun									Labsinc.com										

.

feary

anoun

Nick Gallant PSI 12650 New Brittany Blvd Suite 102 Fort Myers, FL 33907

Re:	SunLabs Project Number:	091021.09
	Client Project Description:	Lee County Plant Study

Dear Mr. Gallant:

Enclosed is the report of laboratory analysis for the following samples:

Sample Number	Sample Description	Date Collected
91752	Outfall 1	10/20/2009
91753	Outfall 2	10/20/2009
91754	Weir	10/20/2009

TKN and Ammonia were analyzed by Benchmark Enviroanalytical Inc. NELAC# E84167.

Copies of the Chain(s)-of-Custody, if received, are attached to this report.

If you have any questions or comments concerning this report, please do not hesitate to contact us.

Sincerely,

Michael W. Palmer Vice President, Laboratory Operations

Enclosures

SunLabs, Inc.	Cover Page 1 of 1	Phone:	(813) 881-9401
5460 Beaumont Center Blvd., Suite 520 Tampa, FL 33634) Unless Otherwise Noted and Where Applicable:	Email: Website	Info@SunLabsInc.com : www.SunLabsInc.com
These samples were received at the proper temperature	and were analyzed as received. The results barein relate only to the items tested or to the sam	nolos as rocoivo	d by the laboratory • This report

These samples were received at the proper temperature and were analyzed as received. The results herein relate only to the items tested or to the samples as received by the laboratory • This report shall not be reproduced except in full, without the written approval of the laboratory • Results for all solid matrices are reported on a dry weight basis • All samples will be disposed of within 45 days of the date of receipt of the samples • All samples in the body of the report are environmental samples. All results in the Quality Control (QC) section are labeled appropriately • All results meet the requirements of the NELAC standards • Footnotes are given at the end of the report • Uncertainty values are available upon request.

SunLabs Sample Number Sample Designation	91752 Outfall 1			N [[Matrix Date Co Date Re	llected ceived	Surfa 10/2 10/2		
Parameters	Method	Units	Results	Dil Facto	MDL or	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Anions by Ion Chromatograp	<u>hy</u>								
Date Analyzed			10/22/2009	1				10/22/09 01:48	10/21/09 15:00
Nitrate as N	300.0	mg/L	0.33	1	0.014	0.056	14797-55-8	10/22/09 01:48	10/21/09 15:00
Ortho-phosphate as P	300.0	mg/L	0.022 U	1	0.022	0.088	14265-44-2	10/22/09 01:48	10/21/09 15:00
<u>Ammonia</u>									
Nitrogen Ammonia (as N)	350.2	mg/L	0.042	1	0.005	0.020		10/23/09 13:00	
<u>Total Kjeldahl Nitrogen</u>									
Date Digested	351.2		10/27/09 S7	1				10/27/09 10:00	
Total Kjeldahl Nitrogen (TKN)	351.2	mg/L	0.660	1	0.05	0.2		10/27/09 10:00	
Total Phosphorous									
Date Digested	3010		10/22/2009						10/22/09 08:45
Total Phosphorous	6010	mg/L	0.034 I,V	1	0.015	0.06		10/23/09 16:55	10/22/09 08:45

SunLabs Sample Number Sample Designation	91753 Outfall 2			N D	latrix ate Co	llected	Surfa 10/20		
				D	ale Re	ceiveu	10/2	1/2009 12.15	
Parameters	Method	Units	Results	Dil Facto	MDL r	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Anions by Ion Chromatograp	<u>hy</u>								
Date Analyzed			10/22/2009	1				10/22/09 02:14	10/21/09 15:00
Nitrate as N	300.0	mg/L	0.12	1	0.014	0.056	14797-55-8	10/22/09 02:14	10/21/09 15:00
Ortho-phosphate as P	300.0	mg/L	0.022 U	1	0.022	0.088	14265-44-2	10/22/09 02:14	10/21/09 15:00
Ammonia									
Nitrogen Ammonia (as N)	350.2	mg/L	0.046	1	0.005	0.020		10/23/09 13:00	
<u>Total Kjeldahl Nitrogen</u>									
Date Digested	351.2		10/27/09 S7	1				10/27/09 10:00	
Total Kjeldahl Nitrogen (TKN)	351.2	mg/L	0.794	1	0.05	0.2		10/27/09 10:00	
Total Phosphorous									
Date Digested	3010		10/22/2009						10/22/09 08:45
Total Phosphorous	6010	mg/L	0.015 U	1	0.015	0.06		10/23/09 16:58	10/22/09 08:45

SunLabs Sample Number Sample Designation	91754 Weir				N C C	Matrix Date Co Date Re	llected ceived	Surfa 10/2 10/2		
Parameters		Method	Units	Results	Dil Facto	MDL r	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Anions by Ion Chromatograp	<u>hy</u>									
Date Analyzed				10/22/2009	1				10/22/09 03:34	10/21/09 15:00
Nitrate as N		300.0	mg/L	0.26	1	0.014	0.056	14797-55-8	10/22/09 03:34	10/21/09 15:00
Ortho-phosphate as P		300.0	mg/L	0.022 U	1	0.022	0.088	14265-44-2	10/22/09 03:34	10/21/09 15:00
<u>Ammonia</u>										
Nitrogen Ammonia (as N)		350.2	mg/L	0.006 I	1	0.005	0.020		10/23/09 13:00	
<u>Total Kjeldahl Nitrogen</u>										
Date Digested		351.2		10/27/09 S7	1				10/27/09 10:00	
Total Kjeldahl Nitrogen (TKN)		351.2	mg/L	0.705	1	0.05	0.2		10/27/09 10:00	
Total Phosphorous										
Date Digested		3010		10/22/2009						10/22/09 08:45
Total Phosphorous		6010	mg/L	0.015 U	1	0.015	0.06		10/23/09 17:00	10/22/09 08:45

Report of Laboratory Analysis

SunLabs Project Number PSI

091021.09

Project Description

Lee County Plant Study

	Footnotes
*	SunLabs is not currently NELAC certified for this analyte.
1	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
1, V	
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
MB	Method Blank
MS	Matrix Spike
MSD	Matrix Spike Duplicate
NA	Sample not analyzed at client's request.
Q	Sample held beyond the accepted holding time.
RL	RL(reporting limit) = PQL(practical quantitation limit).
RPD	Relative Percent Difference
<i>S7</i>	This analysis performed by Benchmark EnviroAnalytical, Inc., Certification number E84167.
U	Compound was analyzed for but not detected.
V	Indicates that the analyte was detected in both the sample and the associated method blank.

Quality Control Data

091021.09

Project Number

PSI

Project Description
Lee County Plant Study

October 29, 2009

Batch No:	D1894								A	ssociated	d Sample:	S					
Test:	Anions by	Ion Chromatograph	ıy						91752, 91753, 91754								
TestCode:	300.0																
Compound		Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC RPD	Limits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifiers	
Parent Sample Number										91752	91752						
Chloride		0.045 U	5.0	95	95	0	3	90-110	5.0	47 *	31 *	41 *	6	80-120			
Nitrite as N		0.016 U	5.0	104	104	0	7	90-110	5.0	103	102	1	8	80-120			
Nitrate as N		0.014 U	5.0	96	95	1	10	90-110	5.0	97	96	1	11	80-120			
Ortho-phosphate as P		0.022 U	5.0	102	104	2	7	90-110	5.0	92	96	4	15	80-120			
Batch No:	D1898								A	ssociated	d Sample:	S					
Test:	Metals by	EPA Method 6010							91	1752, 91	753, 9175	4					
TestCode:	6010-L																
Compound		Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC RPD	Limits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifiers	
Parent Sample Number										91785	91785						
Arsenic		0.0048 U	1000	92	97	5	20	80-120	1000	93	95	2	20	75-125			

80-120

20

10.0

92

92

20

0

75-125

* indicates value is outside control limits for %Recovery or greater than acceptance criteria for RPD

0.053 I

Footnotes

U

Phosphorous

....

91

1

92

, _____ Compound was analyzed for but not detected.

10.0

						!														
			;	SunLal	os, Inc	. Ch	ain	of	Cus	tod	у						Nº 2	2934		
Client Name:	PSI Nork Guer	ONT			Project	# 19	OC ŶI	1 10	00	Ц. —	00	7			_	Project Name: Lee County Plinnt				
Address:	1205 Men Bel my B	J. 5. 10	Ł	Preservati	ve	5	N	I								Project#: PO #:				
-	Smillers FL3	3937		Matrix		W	SW	5W								Alt Bill To:				
Phone / Fax:∠ E-Mail : ;	nick-gallante psiu	5a, Can-		Analysis / Reque	Method ested	V,NH		te 10ph								ue Date Requ			1	
SunLabs Sample #	Sample Description		Sample Date	Sample # of Time Bottles											-		Approval site			
91152	Outpall		()-,)-()	1812	N)	}	'n	1	,							Cash rates			1	
9753	Outfalls	2	0.70-17	1820	M)	ŧ,	1	1		2						Remarks / Com	ments:			
71754	<u>III OIR</u>)-0-01	1850	.3		}	1							_					
						-	<u> </u>					_			-					
																	*			
	· · · ·					,														
															4					
					-		<u> </u>								\neg					
															\neg					
															╞	ength of Recor	d Retention if		1	
					1										_	other than 5 yea	ars:			
Sampler Signature	e/Date: → 10-10 (1-)	Printed Nam	ne / Affiliat	ion:	ST					SUN UNR	LABS ETUP	, INC RNED	, RES SAN	SERVES	s th And	E RIGHT TO B	ILL FOR UNU JNUSED SAM	SED/ PLES.		
		1 1 2 11	C III	1	2			Reli	nquish	ed B	y:	0		Relinqu	ishe	ed To:	Date:	Time:		
<u>Bottle Type Codes:</u> GV = Glass Vial	GVS = Low Level Volatile Kit	<u>Preservative Co</u> H = Hydrochlori	<u>des:</u> ic Acid + Ice	S = Sulfuric	Acid + Ice							R	~	UL.	Ľ	<u> </u>	10(19)	100		
GA = Glass Amber P = Plastic	T = Tedlar Bag O = Other	I = Ice only	+ lce	VS = MeOH O = Other (a	l, OFW, + Ice Specify)			Reli	nquish	ed By				Relinqu	lishe /-	ed lo: ∕∕	Date:	11me: > 11545		
S = Soli Jar Matrix Codes:	SO = Soil	Internal Use Or	niv	1998.00	<u>.</u>		, k	Reli	nauish	ed B	v:			Relinau	iishe	ed To:	Date:	Time:	1	
A = Air	SOL = Solid	Sample Conditio	on Upon Rec	<u>eipt:</u>				1	0-	17				R	21	2.	121	10.00	+	
DW = Drinking Water	SW = Surface Water	Custody Seals p	present?		L	<u>en</u>	צשן	$\langle $			المر ا	-15		c 721/09	12.10	· ·				
GW = Ground Water	W = Water (Blanks)	Shipping Bills at	ttached?		Reli	nquish	ed B	y:			Relinqu	uisho	ed To:	Date:	Time:					
SE = Sediment	O = Other (Specify)	Sample contain	ers intact?		SIN IN	A L														
Temp: 3.0 Salipties within routing unless? Received on Ice?? Y.I.N./NA Proper containers and preservatives? Y.I.N./NA										546	i0 Bei	aumo Pho il: info	nt Ce ne: 8 o@Si	Sur nter Blve 13-881-9 inLabsIr	n La d., \$ 940 nc.c	bs, Inc. Buite 520, Tamp 1 / Fax: 813-354 om www.Sun	l ba, Florida 3363 4-4661 LabsInc.com	34		
																U				

2

Nick Gallant PSI 12650 New Brittany Blvd Suite 102 Fort Myers, FL 33907

Re:	SunLabs Project Number:	091117.05
	Client Project Description:	Lee County Plant Study

Dear Mr. Gallant:

Enclosed is the report of laboratory analysis for the following samples:

Sample Number	Sample Description	Date Collected
93045	Outfall 1	11/16/2009
93046	Outfall 2	11/16/2009
93047	Weir	11/16/2009

Ammonia was analyzed by Benchmark Enviroanalytical, Inc. NELAC# E84167.

Copies of the Chain(s)-of-Custody, if received, are attached to this report.

If you have any questions or comments concerning this report, please do not hesitate to contact us.

Sincerely,

Michael W. Palmer Vice President, Laboratory Operations

Enclosures

SunLabs, Inc.	Cover Page 1 of 1	Phone: (813) 881-9401
5460 Beaumont Center Blvd., Suite 52 Tampa, FL 33634) Unless Otherwise Noted and Where Applicable:	Email: Info@SunLabsInc.com Website: www.SunLabsInc.com
These samples were received at the proper temperature	e and were analyzed as received. The results herein relate only to the items tested o	r to the samples as received by the laboratory • This report

These samples were received at the proper temperature and were analyzed as received. The results herein relate only to the items tested or to the samples as received by the laboratory • This report shall not be reproduced except in full, without the written approval of the laboratory • Results for all solid matrices are reported on a dry weight basis • All samples will be disposed of within 45 days of the date of receipt of the samples • All samples in the body of the report are environmental samples. All results in the Quality Control (QC) section are labeled appropriately • All results meet the requirements of the NELAC standards • Footnotes are given at the end of the report • Uncertainty values are available upon request.

SunLabs Sample Number	93045			Ν	latrix		Surfa	ice Water	
Sample Designation	Outfall 1			D	ate Co	llected	11/1	6/2009 15:55	
eample 2001ghatter				D	ate Re	ceived	11/1	7/2009 08:30	
Parameters	Method	Units	Results	Dil Facto	MDL r	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Anions by Ion Chromatograp	<u>hy</u>								
Date Analyzed			11/17/2009	1				11/17/09 22:25	11/17/09 18:00
Nitrate as N	300.0	mg/L	0.36	1	0.014	0.056	14797-55-8	11/17/09 22:25	11/17/09 18:00
Ortho-phosphate as P	300.0	mg/L	0.022 U	1	0.022	0.088	14265-44-2	11/17/09 22:25	11/17/09 18:00
<u>Ammonia</u>									
Nitrogen Ammonia (as N)	SM4500-NH3C	mg/L	0.054	1	0.005	0.020		11/19/09 11:32	
<u>Total Kjeldahl Nitrogen</u>									
Date Digested	351.2		11/19/09 S7	1				11/19/09 11:00	
Total Kjeldahl Nitrogen (TKN)	351.2	mg/L	0.500	1	0.05	0.2		11/19/09 11:00	
Total Phosphorous									
Date Digested	3010		11/18/2009						11/18/09 09:50
Total Phosphorous	6010	mg/L	0.015 U	1	0.015	0.06		11/24/09 18:38	11/18/09 09:50

SunLabs Sample Number Sample Designation	93046 Outfall 2			N C C	latrix Date Co Date Re	llected ceived	Surfa 11/10 11/1	ce Water 6/2009 16:05 7/2009 08:30	
Parameters	Method	Units	Results	Dil Facto	MDL r	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Anions by Ion Chromatograp	<u>hy</u>								
Date Analyzed			11/17/2009	1				11/17/09 22:46	11/17/09 18:00
Nitrate as N	300.0	mg/L	0.15	1	0.014	0.056	14797-55-8	11/17/09 22:46	11/17/09 18:00
Ortho-phosphate as P	300.0	mg/L	0.022 U	1	0.022	0.088	14265-44-2	11/17/09 22:46	11/17/09 18:00
<u>Ammonia</u>									
Nitrogen Ammonia (as N)	SM4500-NH3C	mg/L	0.079	1	0.005	0.020		11/19/09 11:32	
<u>Total Kieldahl Nitrogen</u>									
Date Digested	351.2		11/19/09 S7	1				11/19/09 11:00	
Total Kjeldahl Nitrogen (TKN)	351.2	mg/L	0.781	1	0.05	0.2		11/19/09 11:00	
Total Phosphorous									
Date Digested	3010		11/18/2009						11/18/09 09:50
Total Phosphorous	6010	mg/L	0.015 U	1	0.015	0.06		11/24/09 18:40	11/18/09 09:50

SunLabs Sample Number Sample Designation	93047 Weir				N [[Matrix Date Co Date Re	llected ceived	Surfa 11/1 11/1	ace Water 6/2009 16:20 7/2009 08:30	
Parameters		Method	Units	Results	Dil Facto	MDL or	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Anions by Ion Chromatograp	hy									
Date Analyzed	-			11/17/2009	1				11/17/09 23:52	11/17/09 18:00
Nitrate as N		300.0	mg/L	0.33	1	0.014	0.056	14797-55-8	11/17/09 23:52	11/17/09 18:00
Ortho-phosphate as P		300.0	mg/L	0.022 U	1	0.022	0.088	14265-44-2	11/17/09 23:52	11/17/09 18:00
<u>Ammonia</u>										
Nitrogen Ammonia (as N)		SM4500-NH3C	mg/L	0.052	1	0.005	0.020		11/19/09 11:32	
<u>Total Kjeldahl Nitrogen</u>										
Date Digested		351.2		11/19/09 S7	1				11/19/09 11:00	
Total Kjeldahl Nitrogen (TKN)		351.2	mg/L	0.525	1	0.05	0.2		11/19/09 11:00	
Total Phosphorous										
Date Digested		3010		11/18/2009						11/18/09 09:50
Total Phosphorous		6010	mg/L	0.027 I	1	0.015	0.06		11/24/09 18:42	11/18/09 09:50

Report of Laboratory Analysis

SunLabs Project Number PSI

091117.05

Project Description
Lee County Plant Study

	Footnotes
*	SunLabs is not currently NELAC certified for this analyte.
1	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
MB	Method Blank
MS	Matrix Spike
MSD	Matrix Spike Duplicate
NA	Sample not analyzed at client's request.
Q	Sample held beyond the accepted holding time.
RL	RL(reporting limit) = PQL(practical quantitation limit).
RPD	Relative Percent Difference
<i>S7</i>	This analysis performed by Benchmark EnviroAnalytical, Inc., Certification number E84167.
U	Compound was analyzed for but not detected.
V	Indicates that the analyte was detected in both the sample and the associated method blank.

Arsenic

Quality Control Data

091117.05

80-120

20

1000

92

93

Project Number

PSI

Project Description Lee County Plant Study

75-125

75-125

75-125

75-125 75-125 75-125 75-125 75-125

20

November 25, 2009

Batch No:	D2179								A	ssociated	d Samples	6				
Test:	Anions by	on Chromatograph	ıy						9	3045, 930	046, 9304	7				
TestCode:	300.0															
Compound		Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC RPD	Limits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifiers
Parent Sample Number										93045	93045					
Nitrate as N		0.014 U mg/L	5.0	103	101	2	10	90-110	5.0	101	101	0	11	80-120		
Ortho-phosphate as P		0.022 U mg/L	5.0	96	97	1	20	90-110	5.0	95	92	3	15	80-120		
Batch No:	D2187								A	ssociated	d Samples	6				
Test:	Metals by I	EPA Method 6010							9	3045, 930	046, 9304	7				
TestCode:	6010-L															
Compound		Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC RPD	Limits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifiers
Parent Sample Number										92974	92974					

Barium	0.001 U	mg/L	1000	95	103	8	20	80-120	1000	95	96	1	20
Cadmium	0.0006 U	mg/L	1000	95	99	4	20	80-120	1000	94	96	2	20
Chromium	0.0035 U	mg/L	1000	101	103	2	20	80-120	1000	97	102	5	20
Lead	0.0044 U	mg/L	1000	97	103	6	20	80-120	1000	96	98	2	20
Phosphorous	0.015 U	mg/L	10.0	99	103	4	20	80-120	10.0	102	101	1	20
Selenium	0.0047 U	mg/L	1000	94	98	4	20	80-120	1000	94	96	2	20
Silver	0.0033 U	mg/L	1000	101	99	2	20	80-120	1000	93	96	3	20

91

94

1000

* indicates value is outside control limits for %Recovery or greater than acceptance criteria for RPD

0.0048 U mg/L

Footnotes

1		14-4661 1LabsInc.com	-9401 / Fax: 813-35	one: 813-881- o@SunLabsl	Pho e-mail: inf		NA (Ŷ.N	preservatives?	roper containers and I	YININA P	on Ice?	Received o
	, ,	pa, Florida 3363	nLabs, Inc. vd Suite 520. Tamr	ont Center Bl	5460 Beaumo				analyses? ee?	ufficient volume for all re vials head-space fr) [•	ķ	Tem
							INA		d? times?	ample containers inta amptes within holding	Other (Specify) St	∖ °	SE = Sediment
	Time:	Date:	uished To:	Reling	shed By:	Relinquis	J.	N/X		hipping Bills attached	Water (Blanks)	ar W≡	GW = Ground Wate
							×	<u>_Y / N</u>		ustody Seals present?	= Surface Water C	er SW	DW = Drinking Wat
) 		i Receipt.	ample Condition Upor	_ = Solid	SOL	A = Air
	Time:	Date:	uished To:	Relinq	shed By:	Relinquis	-		and the second	ternał Use Only	= Soil	S	Matrix Codes:
	Or e	POLINI	2 Bar	6	x Selection	yton.						(S = Soil Jar
		Date:	Inshed To:	Relino	shed By:)	Relinquis	lce	MeOH, OFW, +	0=0	= Ice only = Nitric Acid + Ice	= Tedlar Bag = ≆ Other N	o	GA = Glass Amber
		11/12/01		2	CLEANE	SI		ulfuric Acid + Ice	lce S = S	= Hydrochloric Acid +	/S = Low Level Volatile Kit H	GV	GV = Glass Vial
		1 Lobs		~						eservative Codes:	Pn		Bottle Type Codes
	Time:	Date:	uished To:	Relinq	shed By:	Relinquis		t V	n2 /1	Vickballa		N/K	St /2
	SED/ PLES.	BILL FOR UNU:	S THE RIGHT TO E	D. RESERVE	UNRETURNEI		سهدور در	017	filiation:	rinted Name / Af	ate: //-/6-09 P	ture Da	Sampler Signa
	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.		other than 5 yea					╞					
		rd Retention if	Length of Reco										
		,					{						
		ı				_	-	_					
1		:					-						
									_				
		١											
								-				<u> </u>	
				_	_	-	~		09 162	1-16			920 Y
,		Iments:	Remarks / Com			~	~ .	~~ ~~	141 60	11-16-		2	JU UL6
		1	Cash rates	,		~.		57	-01 155	91-11	in (all 1	C	54056
		Approval site	FDEP Pre			1 T*	। বিজ্য হার্থ হার্থ	e Bottle	e Tihn	Dat			Sample #
	:	reacci.				2377 - ≎≦	5-23 HTTC 15-1	ole # of	ole Sam	Sam	Sample Description		SunLabs
•		lected.	Drie Date Regi			میرا آ د	TA	equested	ת	0. (c) -	K.gallant BS: US	11: <u>17: C</u>	E-Ma
							5 5	sis / Method	Analy:		7-690-9967	X	Phone / Fa
	, 1ª		Alt Bill To:				ممتذكر		Matrix	(<u>1455) (157</u> 0,	THE IDE ENTRY	3.	
			PO #:		-	, N		vative	Prese	100	650 New Sails	S:	Addres
0	S.	17550	Project #:			0		Туре	Bottle		ch (icillaint	or:	Conta
HIGA	S LUDRA H	Per Cam	Project Name:		لہ 05	9 =	ct#	.abs Proje	SunL		Land Contraction	e. T	Client Nam
	2822	NO 2		(stody	n of Cu	ic. Chai	Labs, In	Sun				
APPENDIX B

ROOTS AND SHOOTS TISSUE ANALYSIS LABORATORY REPORTS AND DATA SUMMARY SHEETS

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 25-May-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

PlantAttn: Jeff MedcalfId: Baseline Agrostis RootsProj: Lee County Nutrient StudySampled on 4/29/09 @ 1600 hrs.Proj: Lee County Nutrient Study

Date Received: 30-Apr-2009

Laboratory Number: 321713, Revised

CERTIFICATE OF ANALYSIS

Metho	Dd Parameter	Result	Units
	Crude Moisture	76.82	<u> </u>
	Analysis on Dry Basis		
AOAC	993.13		
	Nitrogen, Total (N)	0.58	00
AOAC	931.01.958.01		
	Phosphorus, Total (P)	0.13	00
AOAC	975.03		
	Potassium, Total (K)	0.15	00

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 25-May-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

PlantAttn: Jeff MedcalfId: Baseline Agrostis ShootsProj: Lee County Nutrient StudySampled on 4/29/09 @ 1600 hrs.Proj: Lee County Nutrient Study

Date Received: 30-Apr-2009

Laboratory Number: 321714, Revised

CERTIFICATE OF ANALYSIS

Metho	Dd Parameter	Result	Units
	Crude Moisture	57.69	0 0
	Analysis on Dry Basis		
AOAC	993.13		
	Nitrogen, Total (N)	0.74	90
AOAC	931.01.958.01		
	Phosphorus, Total (P)	0.24	00
AOAC	975.03		
	Potassium, Total (K)	0.66	90

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 25-May-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

PlantAttn: Jeff MedcalfId: Baseline Juncus RootsProj: Lee County Nutrient StudySampled on 4/29/09 @ 1440 hrs.Proj: Lee County Nutrient Study

Date Received: 30-Apr-2009

Laboratory Number: 321715, Revised

CERTIFICATE OF ANALYSIS

Metho	od Parameter	Result	Units
	Crude Moisture	70.16	%
	Analysis on Dry Basis		
AOAC	993.13		
	Nitrogen, Total (N)	0.68	00
AOAC	931.01.958.01		
	Phosphorus, Total (P)	0.16	00
AOAC	975.03		
	Potassium, Total (K)	0.54	00

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 25-May-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

PlantAttn: Jeff MedcalfId: Baseline Juncus ShootsProj: Lee County Nutrient StudySampled on 4/29/09 @ 1440 hrs.Proj: Lee County Nutrient Study

Date Received: 30-Apr-2009

Laboratory Number: 321716, Revised

CERTIFICATE OF ANALYSIS

Metho	od Parameter	Result	Units
	Crude Moisture	58.29	 o
	Analysis on Dry Basis		
AOAC	993.13		
	Nitrogen, Total (N)	0.78	90
AOAC	931.01.958.01		
	Phosphorus, Total (P)	0.17	00
AOAC	975.03		
	Potassium, Total (K)	0.84	00

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 25-May-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

PlantAttn: Jeff MedcalfId: Baseline Canna RootsProj: Lee County Nutrient StudySampled on 4/29/09 @ 1430 hrs.Proj: Lee County Nutrient Study

Date Received: 30-Apr-2009

Laboratory Number: 321717, Revised

CERTIFICATE OF ANALYSIS

Metho	od Parameter	Result	Units
	Crude Moisture	87.53	%
	Analysis on Dry Basis		
AOAC	993.13		
	Nitrogen, Total (N)	0.53	00
AOAC	931.01,958.01		
	Phosphorus, Total (P)	0.20	010
AOAC	975.03		
	Potassium, Total (K)	1.41	00

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 25-May-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

PlantAttn: Jeff MedcalfId: Baseline Canna ShootsProj: Lee County Nutrient StudySampled on 4/29/09 @ 1430 hrs.Proj: Lee County Nutrient Study

Date Received: 30-Apr-2009

Laboratory Number: 321718, Revised

CERTIFICATE OF ANALYSIS

Metho	od Parameter	Result	Units
	Crude Moisture	89.53	 o
	Analysis on Dry Basis		
AOAC	993.13		
	Nitrogen, Total (N)	0.73	010
AOAC	931.01,958.01		
	Phosphorus, Total (P)	0.65	90
AOAC	975.03		
	Potassium, Total (K)	4.17	00

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 25-May-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

PlantAttn: Jeff MedcalfId: Baseline Pontederia RootsProj: Lee County Nutrient StudySampled on 4/29/09 @ 1530 hrs.Proj: Lee County Nutrient Study

Date Received: 30-Apr-2009

Laboratory Number: 321719, Revised

CERTIFICATE OF ANALYSIS

Metho	od Parameter	Result	Units
	Crude Moisture	90.43	00
	Analysis on Dry Basis		
AOAC	993.13 Nitrogon Total (N)	1 7/	0_
AOAC	931.01.958.01	1./4	-0
	Phosphorus, Total (P)	0.29	00
AOAC	975.03		
	Potassium, Total (K)	1.72	00

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 25-May-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

PlantAttn: Jeff MedcalfId: Baseline Pontederia ShootsProj: Lee County Nutrient StudySampled on 4/29/09 @ 1530 hrs.Proj: Lee County Nutrient Study

Date Received: 30-Apr-2009

Laboratory Number: 321720, Revised

CERTIFICATE OF ANALYSIS

Metho	od Parameter	Result	Units
	Crude Moisture	90.18	 0
	Analysis on Dry Basis		
AOAC	993.13		
	Nitrogen, Total (N)	3.16	90
AOAC	931.01.958.01		
	Phosphorus, Total (P)	0.48	00
AOAC	975.03		
	Potassium, Total (K)	5.29	00

BASELINE RESULTS

	Baseline Roots					
Genus Species	Wet Weight (gm)	% Moisture	Dry Weight (gm)	N (%)	P (%)	K (%)
Agrostis alba	71.0	76.82	16.5	0.58	0.13	0.15
Pontederia cordata	29.6	90.43	2.8	1.74	0.29	1.72
Canna flacida	135.9	87.53	16.9	0.53	0.20	1.41
Juncus effusus	62.4	70.16	18.6	0.68	0.16	0.54
Totals =	298.9		54.9			

Baseline Shoots						
Genus Species	Wet Weight (gm)	% Moisture	Dry Weight (gm)	N (%)	P (%)	K (%)
Agrostis alba	22.5	57.69	9.5	0.74	0.24	0.66
Pontederia cordata	89.8	90.18	8.8	3.16	0.48	5.29
Canna flacida	48.5	89.53	5.1	0.73	0.65	4.17
Juncus effusus	30.0	58.29	12.5	0.78	0.17	0.84
	190.8		35.9			

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 22-Jul-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant	Attn:	Jeff Medcalf
ID: Canna (Shoots)	Proj:	Lee County Vegetated Mat
Sampled on 6/29/09		Nutrient Study
Total Dry Weight: 18.7 grams	Proj#	756-9G006

Date Received: 1-Jul-2009

Laboratory Number: 322887, Revised

CERTIFICATE OF ANALYSIS

Metho	d Parameter	Result	Units	
	Crude Moisture	90.32	00	
AOAC	ANALYSIS ON DRY BASIS 978.02			
	Nitrogen, Total (N)	1.22	00	
	Nitrogen, Total (N)	1.25	010	
	Nitrogen, Total (N)	1.15	00	
AOAC	931.01,958.01			
	Phosphorus, Total (P)	0.12	010	
	Phosphorus, Total (P)	0.11	00	
	Phosphorus, Total (P)	0.11	010	
AOAC	975.03			
	Potassium, Total (K)	5.34	00	
	Potassium, Total (K)	5.82	00	
	Potassium, Total (K)	5.39	010	

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 22-Jul-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant	Attn:	Jeff Medcalf
ID: Canna (Roots)	Proj:	Lee County Vegetated Mat
Sampled on 6/29/09		Nutrient Study
Total Dry Weight: 44.0 grams	Proj#	756-9G006

Date Received: 1-Jul-2009

Laboratory Number: 322888, Revised

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
	Crude Moisture	86.69	0 ¹ 0
AOAC 9'	ANALYSIS ON DRY BASIS 78.02		
	Nitrogen, Total (N)	1.23	010
	Nitrogen, Total (N)	1.12	00
	Nitrogen, Total (N)	1.14	00
AOAC 93	31.01,958.01		
	Phosphorus, Total (P)	0.10	010
	Phosphorus, Total (P)	0.10	00
	Phosphorus, Total (P)	0.10	010
AOAC 9'	75.03		
	Potassium, Total (K)	1.18	010
	Potassium, Total (K)	1.16	010
	Potassium, Total (K)	1.12	90

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 22-Jul-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant	Attn:	Jeff Medcalf
ID: Agrostis (Shoots)	Proj:	Lee County Vegetated Mat
Sampled on 6/29/09		Nutrient Study
Total Dry Weight: 58.8 grams	Proj#	756-9G006

Date Received: 1-Jul-2009

Laboratory Number: 322889, Revised

CERTIFICATE OF ANALYSIS

Method Parameter	Result	Units
Crude Moisture	76.89	0 ₀
ANALYSIS ON DRY BASIS AOAC 978.02		
Nitrogen, Total (N)	1.05	90
Nitrogen, Total (N)	1.15	00
Nitrogen, Total (N)	1.10	00
AOAC 931.01,958.01		
Phosphorus, Total (P)	0.10	00
Phosphorus, Total (P)	0.13	00
Phosphorus, Total (P)	0.13	00
AOAC 975.03		
Potassium, Total (K)	1.63	00
Potassium, Total (K)	1.82	90
Potassium, Total (K)	1.63	010

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 22-Jul-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant	Attn:	Jeff Medcalf
ID: Agrostis (Roots)	Proj:	Lee County Vegetated Mat
Sampled on 6/29/09		Nutrient Study
Total Dry Weight: 140.3 grams	Proj#	756-9G006

Date Received: 1-Jul-2009

Laboratory Number: 322890, Revised

CERTIFICATE OF ANALYSIS

Method Parameter	Result	Units
Crude Moisture	80.59	00
ANALYSIS ON DRY BASIS AOAC 978.02		
Nitrogen, Total (N)	2.01	010
Nitrogen, Total (N)	1.02	90
Nitrogen, Total (N)	1.06	00
AOAC 931.01,958.01		
Phosphorus, Total (P)	0.09	00
Phosphorus, Total (P)	0.09	00
Phosphorus, Total (P)	0.09	00
AOAC 975.03		
Potassium, Total (K)	0.23	00
Potassium, Total (K)	0.28	90
Potassium, Total (K)	0.27	00

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 22-Jul-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant	Attn:	Jeff Medcalf
ID: Pontederia (Shoots)	Proj:	Lee County Vegetated Mat
Sampled on 6/29/09		Nutrient Study
Total Dry Weight: 79.9 grams	Proj#	756-9G006

Date Received: 1-Jul-2009

Laboratory Number: 322891, Revised

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
	Crude Moisture	77.40	<u>0</u>
AOAC 978.	ANALYSIS ON DRY BASIS		
	Nitrogen, Total (N)	1.02	90
	Nitrogen, Total (N)	1.01	010
	Nitrogen, Total (N)	0.80	00
AOAC 931.	01,958.01		
	Phosphorus, Total (P)	0.04	90
	Phosphorus, Total (P)	0.07	00
	Phosphorus, Total (P)	0.07	90
AOAC 975.	.03		
	Potassium, Total (K)	1.70	90
	Potassium, Total (K)	1.71	90
	Potassium, Total (K)	1.70	00

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 22-Jul-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant	Attn:	Jeff Medcalf
ID: Pontederia (Roots)	Proj:	Lee County Vegetated Mat
Sampled on 6/29/09		Nutrient Study
Total Dry Weight: 568.2 grams	Proj#	756-9G006

Date Received: 1-Jul-2009

Laboratory Number: 322892, Revised

CERTIFICATE OF ANALYSIS

Method Parameter	Result	Units
Crude Moisture	74.79	00
ANALYSIS ON DRY BASIS		
Nitrogen, Total (N)	0.67	90
Nitrogen, Total (N)	0.65	010
Nitrogen, Total (N)	0.61	00
AOAC 931.01,958.01		
Phosphorus, Total (P)	0.06	00
Phosphorus, Total (P)	0.04	00
Phosphorus, Total (P)	0.05	90
AOAC 975.03		
Potassium, Total (K)	0.10	00
Potassium, Total (K)	0.15	00
Potassium, Total (K)	0.098	00

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 22-Jul-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant	Attn:	Jeff Medcalf
ID: Juncus (Shoots)	Proj:	Lee County Vegetated Mat
Sampled on 6/29/09		Nutrient Study
Total Dry Weight: 141.6 grams	Proj#	756-9G006

Date Received: 1-Jul-2009

Laboratory Number: 322893, Revised

CERTIFICATE OF ANALYSIS

Method Parameter	Result	Units
Crude Moisture	68.60	00
ANALYSIS ON DRY BASIS AOAC 978.02		
Nitrogen, Total (N)	1.25	00
Nitrogen, Total (N)	1.26	90
Nitrogen, Total (N)	1.27	00
AOAC 931.01,958.01		
Phosphorus, Total (P)	0.08	00
Phosphorus, Total (P)	0.09	010
Phosphorus, Total (P)	0.09	00
AOAC 975.03		
Potassium, Total (K)	1.51	00
Potassium, Total (K)	1.54	00
Potassium, Total (K)	1.33	00

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 22-Jul-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant	Attn:	Jeff Medcalf
ID: Juncus (Roots)	Proj:	Lee County Vegetated Mat
Sampled on 6/29/09		Nutrient Study
Total Dry Weight: 89.4 grams	Proj#	756-9G006

Date Received: 1-Jul-2009

Laboratory Number: 322894, Revised

CERTIFICATE OF ANALYSIS

Method Parameter	Result	Units
Crude Moisture	78.01	90
ANALYSIS ON DRY BASIS AOAC 978.02		
Nitrogen, Total (N)	1.06	90
Nitrogen, Total (N)	1.01	00
Nitrogen, Total (N)	1.08	00
AOAC 931.01,958.01		
Phosphorus, Total (P)	0.11	90
Phosphorus, Total (P)	0.11	00
Phosphorus, Total (P)	0.11	90
AOAC 975.03		
Potassium, Total (K)	0.44	90
Potassium, Total (K)	0.65	90
Potassium, Total (K)	0.60	00

EVENT 1 RESULTS

Sample Event 1 N, P K (Roots)																		
Conus Sposios	Wet Weight (gm)	%	Dry Weight	N Sampl	e Results	(% dwb)	N Mean (%	N SD	P Samp	ole Results ((% dwb)	P Mean	P SD	K Samp	ole Results	(% dwb)	K Mean	K SD (%
Genus Species	wei weight (gin)	Moisture	(gm)	N1	N2	N3	dwb)	(% dwb)	P1	P2	P3	(% dwb)	(% dwb)	K 1	K2 (%)	K3 (%)	(% dwb)	dwb)
Agrostis alba	253.4	80.59	140.3	2.01	1.02	1.06	1.36	0.431	0.09	0.09	0.09	0.09	0.0000	0.23	0.28	0.27	0.26	0.020
Pontederia cordata	993.2	74.79	568.2	0.67	0.65	0.61	0.64	0.022	0.06	0.04	0.05	0.05	0.0067	0.10	0.15	0.098	0.116	0.023
Canna flacida	82.1	86.69	44.0	1.23	1.12	1.14	1.16	0.044	0.10	0.10	0.10	0.10	0.0000	1.18	1.16	1.12	1.15	0.022
Juncus effusus	159.1	78.01	89.4	1.06	1.01	1.08	1.05	0.027	0.11	0.11	0.11	0.11	0.0000	0.44	0.65	0.60	0.56	0.082
Totals =	1,487.81		841.9															

	Sample Event 1 Total (gm) N, P K (Roots)														
Gonus Spacios	Total N (gm dwb)			N Mean	N SD	N SD Total P (gm dwb)			P Mean	P SD (gm	Tota	al K (gm dw	b)	K Mean	K SD (gm
Genus Species	N1	N2	N3	(gm dwb)	(gm dwb)	P1	P2	P3	(gm dwb)	dwb)	K1	K2 (%)	K3 (%)	(gm dwb)	dwb)
Agrotis alba	2.82	1.43	1.49	1.91	0.605	0.13	0.13	0.13	0.13	0.000	0.32	0.39	0.38	0.36	0.0281
Pontederia cordata	3.81	3.69	3.47	3.66	0.126	0.34	0.23	0.28	0.28	0.038	0.57	0.85	0.56	0.66	0.1288
Canna flacida	0.54	0.49	0.50	0.51	0.020	0.04	0.04	0.04	0.04	0.000	0.52	0.51	0.49	0.51	0.0098
Juncus effusus	0.95	0.90	0.97	0.94	0.024	0.10	0.10	0.10	0.10	0.000	0.39	0.58	0.54	0.50	0.0735
Totals =	8.12	6.52	6.42	7.02		0.61	0.50	0.55	0.55		1.80	2.34	1.96	2.03	

	Sample Event 1 Total N, P K (Shoots)																	
Conve Species Wet Weight (rm) % Dry Weight N Sample Results (% dwb) N Mean (% N SD P Sample Results (% dwb) P Mean P SD (% K Sample Results ((% dwb)	K Mean	K SD (%							
Genus Species	wet weight (gin)	Moisture	(gm)	N1	N2	N3	dwb)	(% dwb)	P1	P2	P3	(% dwb)	dwb)	K 1	K2 (%)	K3 (%)	(% dwb)	dwb)
Agrostis alba	104.0	76.89	58.80	1.05	1.15	1.10	1.10	0.033	0.10	0.13	0.13	0.120	0.0133	1.63	1.82	1.63	1.69333	0.0844
Pontederia cordata	141.7	77.40	79.90	1.02	1.01	0.80	0.94	0.096	0.04	0.07	0.07	0.060	0.0133	1.70	1.71	1.70	1.70333	0.0044
Canna flacida	35.6	90.32	18.70	1.22	1.25	1.15	1.21	0.038	0.12	0.11	0.11	0.113	0.0044	5.34	5.82	5.39	5.51667	0.2022
Juncus effusus	238.7	68.60	141.60	1.25	1.26	1.27	1.26	0.007	0.08	0.09	0.09	0.087	0.0044	1.51	1.54	1.33	1.46000	0.0867
Total =	520.08		299.00															

					Sample	Event 1 To	tal of N, P	K (Shoots)						
Conus Species	Tota	al N (gm dwb)	N Mean	N SD (gm	Tot	al P (gm dw	/b)	P Mean	P SD (gm	Tota	ıl K (gm dw	b)	K Mean	K SD (gm
Genus Species	N1	N2	N3	(gm dwb)	dwb)	P1	P2	P3	(gm dwb)	dwb)	K1	K2	K3	(gm)	dwb)
Agrostis alba	0.62	0.68	0.65	0.65	0.020	0.06	0.08	0.08	0.07	0.008	0.96	1.07	0.96	1.00	0.050
Pontederia cordata	0.81	0.81	0.64	0.75	0.076	0.03	0.06	0.06	0.05	0.011	1.36	1.37	1.36	1.36	0.004
Canna flacida	0.23	0.23	0.22	0.23	0.007	0.02	0.02	0.02	0.02	0.001	1.00	1.09	1.01	1.03	0.038
Juncus effusus	1.77	1.78	1.80	1.78	0.009	0.11	0.13	0.13	0.12	0.006	2.14	2.18	1.88	2.07	0.123
Total =	3.43	3.50	3.30	3.41		0.23	0.28	0.28	0.26		5.45	5.71	5.21	5.46	

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 22-Sep-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant Attn: Jeff Medcalf ID: Agrostis Roots Proj: Lee County (Nutrient) Floating Sampled on 8/27/09 Mat Supply Total Dry Weight: 277.1 grams

Date Received: 28-Aug-2009

Laboratory Number: 324492, Revised

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
AOAC 993	Crude Moisture .13	76.39	010
	Nitrogen, Total (N)	1.21	00
	Nitrogen, Total (N)	1.11	00
	Nitrogen, Total (N)	1.13	00
AOAC 931	.01,958.01		
	Phosphorus, Total (P)	0.07	010
	Phosphorus, Total (P)	0.08	010
	Phosphorus, Total (P)	0.07	00
AOAC 975	.03		
	Potassium, Total (K)	0.15	00
	Potassium, Total (K)	0.13	00
	Potassium, Total (K)	0.14	010

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 22-Sep-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

PlantAttn: Jeff MedcalfID: Agrostis ShootsProj: Lee County (Nutrient) Floating
Mat SupplySampled on 8/27/09Mat SupplyTotal Dry Weight: 72.5 gramsProjection (Nutrient) Floating
Mat Supply

Date Received: 28-Aug-2009

Laboratory Number: 324493, Revised

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
AOAC 993	Crude Moisture 3.13	78.93	010
	Nitrogen, Total (N)	1.53	00
	Nitrogen, Total (N)	1.52	90
	Nitrogen, Total (N)	1.52	00
AOAC 931	L.01,958.01		
	Phosphorus, Total (P)	0.11	00
	Phosphorus, Total (P)	0.11	00
	Phosphorus, Total (P)	0.14	00
AOAC 975	5.03		
	Potassium, Total (K)	1.45	00
	Potassium, Total (K)	1.37	90
	Potassium, Total (K)	1.45	00

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 22-Sep-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant Attn: Jeff Medcalf ID: Pontederia Roots Proj: Lee County (Nutrient) Floating Sampled on 8/27/09 Mat Supply Total Dry Weight: 1190.5 grams

Date Received: 28-Aug-2009

Laboratory Number: 324494, Revised

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
AOAC 99	Crude Moisture 93.13	80.56	0 0
	Nitrogen, Total (N)	0.72	010
	Nitrogen, Total (N)	0.62	00
	Nitrogen, Total (N)	0.67	010
AOAC 93	31.01,958.01		
	Phosphorus, Total (P)	0.06	010
	Phosphorus, Total (P)	0.05	00
	Phosphorus, Total (P)	0.04	010
AOAC 9	75.03		
	Potassium, Total (K)	0.14	010
	Potassium, Total (K)	0.10	00
	Potassium, Total (K)	0.12	010

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 22-Sep-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

PlantAttn: Jeff MedcalfID: Pontederia ShootsProj: Lee County (Nutrient) Floating
Mat SupplySampled on 8/27/09Mat SupplyTotal Dry Weight: 33.1 gramsProjection (Nutrient) Floating
Mat Supply

Date Received: 28-Aug-2009

Laboratory Number: 324495, Revised

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
AOAC 993	Crude Moisture .13	72.73	010
	Nitrogen, Total (N)	0.92	00
	Nitrogen, Total (N)	1.10	90
	Nitrogen, Total (N)	0.99	00
AOAC 931	.01,958.01		
	Phosphorus, Total (P)	0.05	00
	Phosphorus, Total (P)	0.06	00
	Phosphorus, Total (P)	0.06	010
AOAC 975	.03		
	Potassium, Total (K)	0.65	00
	Potassium, Total (K)	0.62	90
	Potassium, Total (K)	0.67	010

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 22-Sep-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant Attn: Jeff Medcalf ID: Juncus Roots Proj: Lee County (Nutrient) Floating Sampled on 8/27/09 Mat Supply Total Dry Weight: 247.5 grams

Date Received: 28-Aug-2009

Laboratory Number: 324496, Revised

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
AOAC 993.1	Crude Moisture	74.29	00
	Nitrogen, Total (N)	1.13	00
	Nitrogen, Total (N)	1.02	00
	Nitrogen, Total (N)	1.19	010
AOAC 931.0	01,958.01		
	Phosphorus, Total (P)	0.09	00
	Phosphorus, Total (P)	0.09	00
	Phosphorus, Total (P)	0.11	00
AOAC 975.0)3		
	Potassium, Total (K)	0.44	00
	Potassium, Total (K)	0.43	00
	Potassium, Total (K)		010

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 22-Sep-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant Attn: Jeff Medcalf ID: Juncus Shoots Proj: Lee County (Nutrient) Floating Sampled on 8/27/09 Mat Supply Total Dry Weight: 232.3 grams

Date Received: 28-Aug-2009

Laboratory Number: 324497, Revised

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
AOAC 99	Crude Moisture 93.13	50.70	010
	Nitrogen, Total (N)	0.90	010
	Nitrogen, Total (N)	0.88	00
	Nitrogen, Total (N)	0.90	00
AOAC 93	31.01,958.01		
	Phosphorus, Total (P)	0.06	00
	Phosphorus, Total (P)	0.07	010
	Phosphorus, Total (P)	0.07	00
AOAC 9	75.03		
	Potassium, Total (K)	0.86	00
	Potassium, Total (K)	0.85	00
	Potassium, Total (K)		00

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 22-Sep-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant Attn: Jeff Medcalf ID: Canna Roots Proj: Lee County (Nutrient) Floating Sampled on 8/27/09 Mat Supply Total Dry Weight: 348.6 grams

Date Received: 28-Aug-2009

Laboratory Number: 324498, Revised

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
AOAC 9	Crude Moisture 93.13	75.36	010
	Nitrogen, Total (N)	0.64	00
	Nitrogen, Total (N)	0.66	90
	Nitrogen, Total (N)	0.72	00
AOAC 9	31.01,958.01		
	Phosphorus, Total (P)	0.05	010
	Phosphorus, Total (P)	0.05	010
	Phosphorus, Total (P)	0.05	00
AOAC 9	75.03		
	Potassium, Total (K)	0.31	010
	Potassium, Total (K)	0.31	010
	Potassium, Total (K)	0.29	010

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 22-Sep-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

PlantAttn: Jeff MedcalfID: Canna ShootsProj: Lee County (Nutrient) FloatingSampled on 8/27/09Mat SupplyTotal Dry Weight: 38.8 gramsProjection

Date Received: 28-Aug-2009

Laboratory Number: 324499, Revised

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
	·····		
AOAC 993	Crude Moisture .13	87.60	010
	Nitrogen, Total (N)	1.51	00
	Nitrogen, Total (N)	1.43	90
	Nitrogen, Total (N)	1.44	00
AOAC 931	.01,958.01		
	Phosphorus, Total (P)	0.12	010
	Phosphorus, Total (P)	0.07	010
	Phosphorus, Total (P)	0.09	00
AOAC 975	.03		
	Potassium, Total (K)	4.48	010
	Potassium, Total (K)	4.25	010
	Potassium, Total (K)	4.05	010

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 22-Sep-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant Attn: Jeff Medcalf ID: Ludwigia Roots Proj: Lee County (Nutrient) Floating Sampled on 8/27/09 Mat Supply Total Dry Weight: 62.7 grams

Date Received: 28-Aug-2009

Laboratory Number: 324500, Revised

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
AOAC 993	Crude Moisture .13	83.20	010
	Nitrogen, Total (N)	0.82	00
	Nitrogen, Total (N)	0.73	90
	Nitrogen, Total (N)	1.35	00
AOAC 931	.01,958.01		
	Phosphorus, Total (P)	0.11	00
	Phosphorus, Total (P)	0.16	010
	Phosphorus, Total (P)	0.17	010
AOAC 975	.03		
	Potassium, Total (K)	4.79	010
	Potassium, Total (K)	4.92	90
	Potassium, Total (K)	5.23	00

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 22-Sep-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant Attn: Jeff Medcalf ID: Ludwigia Shoots Proj: Lee County (Nutrient) Floating Sampled on 8/27/09 Mat Supply Total Dry Weight: 36.7 grams

Date Received: 28-Aug-2009

Laboratory Number: 324501, Revised

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
AOAC 993	Crude Moisture 3.13	57.57	010
	Nitrogen, Total (N)	2.61	00
	Nitrogen, Total (N)	2.52	00
	Nitrogen, Total (N)	2.58	00
AOAC 931	1.01,958.01		
	Phosphorus, Total (P)	0.13	00
	Phosphorus, Total (P)	0.13	00
	Phosphorus, Total (P)	0.13	010
AOAC 975	5.03		
	Potassium, Total (K)	1.42	00
	Potassium, Total (K)	1.47	00
	Potassium, Total (K)	1.44	010

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 22-Sep-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

PlantAttn: Jeff MedcalfID: Other ShootsProj: Lee County (Nutrient) Floating
Mat SupplySampled on 8/27/09Mat SupplyTotal Dry Weight: 11.6 gramsProject County (Nutrient) Floating
Mat Supply

Date Received: 28-Aug-2009

Laboratory Number: 324502, Revised

CERTIFICATE OF ANALYSIS

Metho	od	Parameter	Result	Units
		Crude Moisture	15.94	010
AOAC	993.13	Nitrogen, Total (N)	1.27	0
AOAC	931.01,	958.01		°
AOAC	975.03	Phosphorus, Total (P)	0.07	010
		Potassium, Total (K)	0.95	00

Note: Insufficient sample to analyze in triplicate.

EVENT 2 RESULTS

	Sample Event 2 Total N, P K (Roots)																	
Conversional Wet Weight % Dry Weight N Sample Results (% dwb) N Mean N SD (% P Sample Results (% dwb) P Mean P SD (%					K Sam	ple Results ((% dwb)	K Mean	K SD									
Genus Species	(gm)	Moisture	(gm)	N1	N2	N3	(% dwb)	dwb)	P1	P2	P3	(% dwb)	dwb)	K1	K2	K3	(% dwb)	(% dwb)
Agrotis alba	488.8	76.4	277.1	1.21	1.11	1.13	1.150	0.0400	0.07	0.08	0.07	0.073	0.0000	0.15	0.13	0.14	0.140	0.0067
Pontederia cordata	1,156.0	80.6	640.2	0.72	0.62	0.67	0.670	0.0333	0.06	0.05	0.04	0.050	0.0067	0.14	0.10	0.120	0.120	0.0133
Canna flacida	611.3	75.4	348.6	0.64	0.66	0.72	0.673	0.0311	0.05	0.05	0.05	0.050	0.0000	0.31	0.31	0.29	0.303	0.0089
Juncus effusus	431.4	74.3	247.5	1.13	1.02	1.19	1.113	0.0622	0.09	0.09	0.11	0.097	0.0089	0.44	0.43	0.44	0.435	0.0050
Ludwigia spp.	114.9	83.2	62.7	0.82	0.73	1.35	0.967	0.2556	0.11	0.16	0.17	0.147	0.0244	4.79	4.92	5.23	4.980	0.1667
Total =	2,802.3		1,576.1															

Sample Event 2 Total (gm) N, P K (Roots)															
Gonus Spacios	Tot	al N (gm dw	'b)	N Mean	N SD	То	tal P (gm c	lwb)	P Mean	P SD (gm	Tot	al K (gm d	wb)	K Mean	K SD (gm
Genus Species	N1	N2	N3	(gm dwb)	(gm dwb)	P1	P2	P3	(gm dwb)	dwb)	K1	K2	K3	(gm dwb)	dwb)
Agrotis alba	3.35	3.08	3.13	3.19	0.111	0.19	0.22	0.19	0.20	0.012	0.42	0.36	0.39	0.39	0.018
Pontederia cordata	4.61	3.97	4.29	4.29	0.213	0.38	0.32	0.26	0.32	0.043	0.90	0.64	0.77	0.77	0.085
Canna flacida	2.23	2.30	2.51	2.35	0.108	0.17	0.17	0.17	0.17	0.000	1.08	1.08	1.01	1.06	0.031
Juncus effusus	2.80	2.52	2.95	2.76	0.154	0.22	0.22	0.27	0.24	0.022	1.09	1.06	1.09	1.08	0.011
Ludwigia spp.	0.51	0.46	0.85	0.61	0.160	0.07	0.10	0.11	0.09	0.015	3.00	3.08	3.28	3.12	0.105
Total =				13.19					1.03					6.42	

	Sample Event 2 Total N, P K (Shoots)																	
Conus Species Wet Weight % Dry Weight N Sample Results (% dwb) N Mean N SD (% P Sample Results (% dwb) P Mean P SD (% K Sample Results (% d					(% dwb)	K Mean	K SD											
Genus Species	(gm)	Moisture	(gm)	N1	N2	N3	(% dwb)	dwb)	P1	P2	P3	(% dwb)	dwb)	K1	K2 (%)	K3	(% dwb)	(% dwb)
Agrotis alba	129.7	78.93	72.5	1.53	1.52	1.52	1.52	0.004	0.11	0.11	0.14	0.12	0.013	1.45	1.37	1.45	1.42	0.036
Pontederia cordata	57.2	72.73	33.1	0.92	1.10	0.99	1.00	0.064	0.05	0.06	0.06	0.06	0.004	0.65	0.62	0.67	0.65	0.018
Canna flacida	72.8	87.60	38.8	1.51	1.43	1.44	1.46	0.033	0.12	0.07	0.09	0.09	0.018	4.48	4.25	4.05	4.26	0.147
Juncus effusus	350.1	50.70	232.3	0.90	0.88	0.90	0.89	0.009	0.06	0.07	0.07	0.07	0.004	0.86	0.85		0.86	0.005
Ludwigia spp.	57.8	57.57	36.7	2.61	2.52	2.58	2.57	0.033	0.13	0.13	0.13	0.13	0.000	1.42	1.47	1.44	1.44	0.018
Total =	609.76		413.4															-

	Sample Event 2 Total (gm) of N, P K (Shoots)														
Gonus Species	То	tal N (gm dw	'b)	N Mean	N SD (gm	То	otal P (gm o	dwb)	P Mean	P SD (gm	Tot	tal K (gm d	wb)	K Mean	K SD (gm
Genus Species	N1	N2	N3	(gm dwb)	dwb)	P1	P2	P3	(gm dwb)	dwb)	K1	K2	K3	(gm dwb)	dwb)
Agrotis alba	1.11	1.10	1.10	1.10	0.003	0.08	0.08	0.10	0.09	0.010	1.05	0.99	1.05	1.03	0.026
Pontederia cordata	0.30	0.36	0.33	0.33	0.021	0.02	0.02	0.02	0.02	0.001	0.22	0.21	0.22	0.21	0.006
Canna flacida	0.59	0.55	0.56	0.57	0.013	0.05	0.03	0.03	0.04	0.007	1.74	1.65	1.57	1.65	0.057
Juncus effusus	2.09	2.04	2.09	2.08	0.021	0.14	0.16	0.16	0.15	0.010	2.00	1.97		1.99	0.012
Ludwigia spp.	0.96	0.92	0.95	0.94	0.012	0.05	0.05	0.05	0.05	0.000	0.52	0.54	0.53	0.53	0.007
Total =				5.02					0.34					5.41	

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 3-Dec-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant Attn: Jeff Medcalf ID: Pontedaria Shoots Total Dry Weight: 21.4 grams

Date Received: 30-Oct-2009

Laboratory Number: 325968

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
ANAC 993 13	Crude Moisture	86.11	00
110110 999.19	Nitrogen, Total (N)	1.42	010
	Nitrogen, Total (N)	1.40	00
	Nitrogen, Total (N)	1.39	00
AOAC 931.01,	958.01		
,	Phosphorus, Total (P)	0.04	010
	Phosphorus, Total (P)	0.04	00
	Phosphorus, Total (P)	0.03	010
AOAC 975.03			
	Potassium, Total (K)	0.94	010
	Potassium, Total (K)	1.22	00
	Potassium, Total (K)	1.09	00

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 3-Dec-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant Attn: Jeff Medcalf ID: Pontedaria Roots with Husk Total Dry Weight: 486.0 grams

Date Received: 30-Oct-2009

Laboratory Number: 325969

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
AOAC 993.13	Crude Moisture	78.92	00
	Nitrogen, Total (N)	0.67	010
	Nitrogen, Total (N)	0.48	010
	Nitrogen, Total (N)	0.35	010
AOAC 931.01	,958.01		
	Phosphorus, Total (P)	0.04	010
	Phosphorus, Total (P)	0.04	010
	Phosphorus, Total (P)	0.04	00
AOAC 975.03	-		
	Potassium, Total (K)	0.043	010
	Potassium, Total (K)	0.038	00
	Potassium, Total (K)	0.036	00

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 3-Dec-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant Attn: Jeff Medcalf ID: Argostis Shoots Total Dry Weight: 716.3 grams

Date Received: 30-Oct-2009

Laboratory Number: 325970

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
AOAC 993.13	Crude Moisture	83.60	00
	Nitrogen, Total (N)	2.25	00
	Nitrogen, Total (N)	2.42	00
	Nitrogen, Total (N)	2.17	00
AOAC 931.01,9	958.01		
	Phosphorus, Total (P)	0.16	00
	Phosphorus, Total (P)	0.16	00
	Phosphorus, Total (P)	0.12	00
AOAC 975.03			
	Potassium, Total (K)	1.79	00
	Potassium, Total (K)	1.82	00
	Potassium, Total (K)	1.87	010

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 3-Dec-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant Attn: Jeff Medcalf ID: Argostis Roots Total Dry Weight: 1904.7 grams

Date Received: 30-Oct-2009

Laboratory Number: 325971

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
AOAC 993.13	Crude Moisture 3	86.61	00
	Nitrogen, Total (N)	1.37	00
	Nitrogen, Total (N)	1.41	00
	Nitrogen, Total (N)	1.42	00
AOAC 931.01	1,958.01		
	Phosphorus, Total (P)	0.10	00
	Phosphorus, Total (P)	0.10	00
	Phosphorus, Total (P)	0.10	00
AOAC 975.03	3		
	Potassium, Total (K)	0.27	00
	Potassium, Total (K)	0.24	00
	Potassium, Total (K)	0.24	010

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 3-Dec-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant Attn: Jeff Medcalf ID: Canna Shoots Total Dry Weight: 18.9 grams

Date Received: 30-Oct-2009

Laboratory Number: 325972

CERTIFICATE OF ANALYSIS

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 3-Dec-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant Attn: Jeff Medcalf ID: Canna Roots Total Dry Weight: 555.8 grams

Date Received: 30-Oct-2009

Laboratory Number: 325973

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
	Crude Moisture	52.38	00
AOAC 993.13			
	Nitrogen, Total (N)	2.17	010
	Nitrogen, Total (N)	2.21	00
	Nitrogen, Total (N)	2.21	010
AOAC 931.01	,958.01		
	Phosphorus, Total (P)	0.14	00
	Phosphorus, Total (P)	0.18	00
	Phosphorus, Total (P)	0.13	00
AOAC 975.03			
	Potassium, Total (K)	1.07	00
	Potassium, Total (K)	1.07	00
	Potassium, Total (K)	0.81	010

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 3-Dec-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant Attn: Jeff Medcalf ID: Juncus Roots Total Dry Weight: 342.3 grams

Date Received: 30-Oct-2009

Laboratory Number: 325975

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
AOAC 993.13	Crude Moisture	87.39	010
	Nitrogen, Total (N)	1.25	010
	Nitrogen, Total (N)	1.41	00
	Nitrogen, Total (N)	1.46	00
AOAC 931.01,	,958.01		
	Phosphorus, Total (P)	0.13	00
	Phosphorus, Total (P)	0.13	00
	Phosphorus, Total (P)	0.11	010
AOAC 975.03			
	Potassium, Total (K)	0.66	010
	Potassium, Total (K)	0.70	00
	Potassium, Total (K)	1.01	00

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 8-Dec-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant Attn: Jeff Medcalf ID: Juncus Shoots Total Dry Weight: 390.7 grams

Date Received: 30-Oct-2009

Laboratory Number: 325974

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
AOAC 993.13	Crude Moisture	70.01	00
	Nitrogen, Total (N)	1.16	0
	Nitrogen, Total (N)	1.05	00
	Nitrogen, Total (N)	1.00	00
AOAC 931.01,	958.01		
	Phosphorus, Total (P)	0.06	010
	Phosphorus, Total (P)	0.06	010
	Phosphorus, Total (P)	0.07	010
AOAC 975.03			
	Potassium, Total (K)	1.06	00
	Potassium, Total (K)	1.07	010
	Potassium, Total (K)	1.15	00

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 8-Dec-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant Attn: Jeff Medcalf ID: Ludwigia Shoots Total Dry Weight: 343.9 grams

Date Received: 30-Oct-2009

Laboratory Number: 325976

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
AOAC 993.13	Crude Moisture	83.5	00
	Nitrogen, Total (N)	1.56	8
	Nitrogen, Total (N)	1.52	010
	Nitrogen, Total (N)	1.38	00
AOAC 931.01,	958.01		
	Phosphorus, Total (P)	0.10	00
	Phosphorus, Total (P)	0.11	00
	Phosphorus, Total (P)	0.15	00
AOAC 975.03			
	Potassium, Total (K)	1.79	00
	Potassium, Total (K)	1.97	010
	Potassium, Total (K)	1.79	010

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 8-Dec-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant Attn: Jeff Medcalf ID: Ludwigia Roots Total Dry Weight: 107.2 grams

Date Received: 30-Oct-2009

Laboratory Number: 325977

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
ANAC 993 13	Crude Moisture	90.62	90
110110 999.19	Nitrogen, Total (N)	2.08	010
	Nitrogen, Total (N)	1.97	00
	Nitrogen, Total (N)	2.04	00
AOAC 931.01,	958.01		
,	Phosphorus, Total (P)	0.18	00
	Phosphorus, Total (P)	0.20	00
	Phosphorus, Total (P)	0.21	00
AOAC 975.03			
	Potassium, Total (K)	0.89	90
	Potassium, Total (K)	0.84	00
	Potassium, Total (K)	0.92	00

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 8-Dec-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant Attn: Jeff Medcalf ID: Unknown Shoots Total Dry Weight: 26.2 grams

Date Received: 30-Oct-2009

Laboratory Number: 325978

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
AOAC 993.13	Crude Moisture	76.42	00
	Nitrogen, Total (N)	1.58	00
	Nitrogen, Total (N)	1.76	010
	Nitrogen, Total (N)	1.74	010
AOAC 931.01,	958.01		
	Phosphorus, Total (P)	0.11	010
	Phosphorus, Total (P)	0.10	010
	Phosphorus, Total (P)	0.10	010
AOAC 975.03	-		
	Potassium, Total (K)	1.68	010
	Potassium, Total (K)	1.70	00
	Potassium, Total (K)	1.77	010

1145 E. Cass St, Tampa, FL 33602 Phone: 813-223-9702 Fax: 813-223-9332 WWW.THORNTONLAB.COM

> 8-Dec-2009 Page 1 of 1

Report For: Professional Service Industries, Inc. 5801 Benjamin Center Drive Tampa, FL 33634

Sample Identification:

Plant Attn: Jeff Medcalf ID: Unknown Roots Total Dry Weight: 6.0 grams

Date Received: 30-Oct-2009

Laboratory Number: 325979

CERTIFICATE OF ANALYSIS

Method	Parameter	Result	Units
AOAC 993.13	Crude Moisture 3	76.10	00
	Nitrogen, Total (N)	1.47	010
	Nitrogen, Total (N)	1.49	010
	Nitrogen, Total (N)		010
AOAC 931.01	1,958.01		
	Phosphorus, Total (P)	0.09	010
	Phosphorus, Total (P)	0.09	010
	Phosphorus, Total (P)	0.10	00
AOAC 975.03	3		
	Potassium, Total (K)	0.74	00
	Potassium, Total (K)	0.77	00
	Potassium, Total (K)	0.75	010

EVENT 3 RESULTS

	Sample Event 3 Total N, P K (Roots)																	
Gonus Spacios	Wet Weight	%	Dry Weight	N Samp	le Results	(% dwb)	N Mean	N SD	P Samp	ole Results ((% dwb)	P Mean	P SD (%	K Sam	ole Results	(% dwb)	K Mean	K SD
Genus Species	(gm)	Moisture	(gm)	N1	N2	N3	(% dwb)	(% dwb)	P1	P2	P3	(% dwb)	dwb)	K1	K2	K3	(% dwb)	(% dwb)
Agrotis alba	3,554.4	86.61	1,904.7	1.37	1.41	1.42	1.40	0.020	0.10	0.10	0.10	0.10	0.000	0.27	0.24	0.24	0.250	0.0133
Pontederia cordata	176.8	78.92	98.8	0.67	0.48	0.35	0.50	0.113	0.04	0.04	0.04	0.04	0.000	0.04	0.04	0.036	0.039	0.0027
Canna flacida	846.9	52.38	555.8	2.17	2.21	2.21	2.20	0.018	0.14	0.18	0.13	0.15	0.020	1.07	1.07	0.81	0.983	0.1156
Juncus effusus	641.4	87.39	342.3	1.25	1.41	1.46	1.37	0.082	0.13	0.13	0.11	0.12	0.009	0.66	0.70	1.01	0.790	0.1467
Ludwigia spp.	204.3	90.62	107.2	2.08	1.97	2.04	2.03	0.040	0.18	0.20	0.21	0.20	0.011	0.89	0.84	0.92	0.883	0.0289
Total =	5,219.5		2,901.6															

	Sample Event 3 Total (gm) N, P K (Roots)														
Gonus Spacios	Genus Species Total N (gm dwb)		wb)	N Mean	N SD	Total P (gm dwb)			P Mean P SD (gm Total K (gm dwb)				K Mean	K SD (gm	
Genus Species	N1	N2	N3	(gm dwb)	(gm dwb)	P1	P2	P3	(gm dwb)	dwb)	K1	K2	K3	(gm dwb)	dwb)
Agrotis alba	26.09	26.86	27.05	26.67	0.38	1.90	1.90	1.90	1.90	0.000	5.14	4.57	4.57	4.76	0.254
Pontederia cordata	0.66	0.47	0.35	0.49	0.11	0.04	0.04	0.04	0.04	0.000	0.04	0.04	0.04	0.04	0.003
Canna flacida	12.06	12.28	12.28	12.21	0.10	0.78	1.00	0.72	0.83	0.111	5.95	5.95	4.50	5.47	0.642
Juncus effusus	4.28	4.83	5.00	4.70	0.28	0.44	0.44	0.38	0.42	0.030	2.26	2.40	3.46	2.70	0.502
Ludwigia spp.	2.23	2.11	2.19	2.18	0.04	0.19	0.21	0.23	0.21	0.012	0.95	0.90	0.99	0.95	0.031
Total =	45.33	46.55	46.86	46.25		3.36	3.60	3.27	3.41		14.35	13.85	13.55	13.92	1.432

	Sample Event 3 Total N, P K (Shoots)																	
Gonus Species	Wet Weight	%	Dry Weight	N Samp	le Results	(% dwb)	N Mean	N SD	P Samp	ole Results ((% dwb)	P Mean	P SD (%	K Samp	le Results	(% dwb)	K Mean	K SD
Genus Species	(gm)	Moisture	(gm)	N1	N2	N3	(% dwb)	(% dwb)	P1	P2	P3	(% dwb)	dwb)	K1	K2	K3	(% dwb)	(% dwb)
Agrotis alba	1,315.1	83.60	716.3	2.25	2.42	2.17	2.28	0.093	0.16	0.16	0.12	0.15	0.018	1.79	1.82	1.87	1.83	0.029
Pontederia cordata	39.8	86.11	21.4	1.42	1.40	1.39	1.40	0.011	0.04	0.04	0.03	0.04	0.004	0.94	1.22	1.09	1.08	0.096
Canna flacida	36.8	94.79	18.9	1.78	1.78	1.97	1.84	0.084	0.13	0.13	0.14	0.13	0.004	3.67	3.70	3.72	3.70	0.018
Juncus effusus	664.2	70.01	390.7	1.16	1.05	1.00	1.07	0.060	0.06	0.06	0.07	0.06	0.004	1.06	1.07	1.15	1.09	0.038
Ludwigia spp.	631.1	83.50	343.9	1.56	1.52	1.38	1.49	0.071	0.10	0.11	0.15	0.12	0.020	1.79	1.97	1.79	1.85	0.080
Total =	2,687.1		1,491.2															

	Sample Event 3 Total (gm) N, P K (Shoots)														
Genus Species Total N (gm dwb)		wb)	N Mean	N SD	Tota	Total P (gm dwb)		P Mean	P Mean P SD (gm Total K (gm dwb)				K Mean	K SD (gm	
Genus Species	N1	N2	N3	(gm dwb)	(gm dwb)	P1	P2	P3	(gm dwb)	dwb)	K1	K2	K3	(gm dwb)	dwb)
Agrotis alba	16.12	17.33	15.54	16.33	0.669	1.15	1.15	0.86	1.05	0.127	12.82	13.04	13.3948	13.08	0.207
Pontederia cordata	0.30	0.30	0.30	0.30	0.002	0.01	0.01	0.01	0.01	0.001	0.20	0.02	0.02	0.08	0.082
Canna flacida	0.34	0.34	0.37	0.35	0.016	0.02	0.02	0.03	0.03	0.001	0.69	0.07	0.07	0.28	0.279
Juncus effusus	4.53	4.10	3.91	4.18	0.234	0.23	0.23	0.27	0.25	0.017	4.14	0.01	0.01	1.39	1.835
Ludwigia spp.	5.36	5.23	4.75	5.11	0.245	0.34	0.38	0.52	0.41	0.069	6.16	0.03	0.03	2.07	2.723
Total =	26.65	27.30	24.87	26.27		1.76	1.79	1.68	1.74		24.01	13.16	13.52	16.90	

APPENDIX C

BASELINE THROUGH SAMPLE EVENT 3 COMPOSITE RESULTS

Table: Gross Root Biomass (gm dwb) on Sample Mats												
Genus/ Species	Baseline	Event 1	Event 2	Event 3								
Agrostis alba	46.20	140.3	277.1	1,904.7								
Pontederia cordata	7.65	568.2	640.2	98.8								
Canna flacida	16.95	44.0	348.6	555.8								
Juncus effusus	46.55	89.4	247.5	342.3								
Total	117.3	841.9	1,513.4	2,901.6								

Table: Gross Shoot Biomass (gm dry weight basis) on Sample Mats					
Genus/ Species	Baseline	Event 1	Event 2	Event 3	
Agrostis alba	26.7	58.8	72.5	716.3	
Pontederia cordata	23.8	79.9	33.1	21.4	
Canna flacida	5.1	18.7	38.8	18.9	
Juncus effusus	31.3	141.6	232.3	390.7	
Total =	86.8	299.0	376.7	1,147.3	

Table: Gross Root and Shoot Biomass (gm dry weight basis) on Sample Mats					
Genus/ Species	Baseline	Event 1	Event 2	Event 3	
Agrostis alba	72.9	199.1	349.6	2,621.0	
Pontederia cordata	31.5	648.1	673.3	120.2	
Canna flacida	22.0	62.7	387.4	574.7	
Juncus effusus	77.8	231.0	479.8	733.0	
Ludwigia spp.			99.4	451.1	
Other Spp.			11.6	32.2	
Total	204.2	1,140.9	2,001.1	4,532.2	

Table: Total Nitrogen (gm dwb) in Sample Mat Roots						
Genus Species Baseline Event 1 Event 2 Event 3						
Agrostis alba	0.27	1.91	3.19	26.67		
Pontederia cordata	0.13	3.66	7.98	2.43		
Canna flacida	0.09	0.51	2.35	12.21		
Juncus effusus	0.32	0.94	2.76	4.70		
Total 0.81 7.02 16.27 46.01						

Table: Total Nitrogen (gm dwb) in Sample Mat Shoots						
Baseline Event 1 Event 2 Event 3						
Agrostis alba	0.20	0.65	1.10	16.33		
Pontederia cordata	0.75	0.75	0.33	0.30		
Canna flacida	0.04	0.23	0.57	0.35		
Juncus effusus	0.24	1.78	2.08	4.18		
Total 1.23 3.41 4.08 21.16						

Table: Total Nitrogen (gm dwb) in Sample Mat Roots and Shoots				
	Baseline	Event 1	Event 2	Event 3
Agrostis alba	0.46	2.56	4.29	43.00
Pontederia cordata	0.89	4.41	8.31	2.73
Canna flacida	0.13	0.74	2.91	12.56
Juncus effusus	0.56	2.72	1.55	8.88
Ludwigia spp.			1.55	7.29
Other Species			0.15	0.53
Total	2.04	10.43	18.61	74.46

Table: Total Phosphorous (gm dwb) in Sample Mat Roots					
	Baseline	Event 1	Event 2	Event 3	
Agrostis alba	0.060	0.126	0.203	1.905	
Pontederia cordata	0.022	0.284	0.320	0.040	
Canna flacida	0.034	0.044	0.174	0.834	
Juncus effusus	0.074	0.098	0.239	0.422	
Total 0.190 0.553 0.937 3.200					

Table: Total Phosphorous (gm dwb) in Sample Mat Shoots					
Genus Species	Baseline	Event 1	Event 2	Event 3	
Agrostis alba	0.064	0.071	0.087	1.051	
Pontederia cordata	0.114	0.048	0.019	0.008	
Canna flacida	0.033	0.021	0.036	0.025	
Juncus effusus	0.053	0.123	0.155	0.247	
Total	0.264	0.262	0.297	1.331	

Table: Total Phosphorous (gm dwb) in Sample Mat Roots and Shoots					
Genus Species	Baseline	Event 1	Event 2	Event 3	
Agrostis alba	0.124	0.197	0.290	2.955	
Pontederia cordata	0.136	0.332	0.339	0.047	
Canna flacida	0.067	0.065	0.211	0.859	
Juncus effusus	0.128	0.221	0.394	0.670	
Total	0.455	0.815	1.234	4.531	

