

Acknowledgement of Leadership

A special note of tribute is given in memory and honor of John Mulholland, Mayor deceased, of the Town of Fort Myers Beach.

His vision and dedication provided the leadership to begin the journey to create a plan for streetscape and safety enhancements for Estero Boulevard.

His smile and wit are but a memory,
but his mission remains
and will be accomplished
through the efforts of the Town Council,
citizens, and staff of a caring and grateful community.

Project Leadership

Daniel Hughes Mayor
Ray Murphy Vice Mayor
Anita Cereceda Council Member
Terry Cain Council Member
Garr Reynolds Council Member

Town of Fort Myers Beach
Marsha Segal-George Town Manager
John Gucciardo Deputy Town Manager
Pam Houck Service Delivery Coordinator
Debbie Lasich Administrative Assistant
Janneen Paulauskis Accounts Supervisor
Richard Roosa Town Attorney

Walkable Communities, Inc.

Dan Burden Director
Peter Swift, P.E. Principal Engineer
Ramon Trias Principal Town Planner
Mario Rubio Principal Architect

Special Thanks: Larry Welty, P.E. Project Assistant Kelly LaRosa Project Assistant

Alternate Street Design, P.A. Michael Wallwork, P.E. President

Aerial Cartographics of America, Inc. Steve Kuda, P.S.M. Vice President

Ken Sneeden & Associates
Multimedia Production
Ken Sneeden President

WilsonMiller, Inc.

Richard Woodruff, PhD Community Liaison Bruce Rankin, RLA Landscape Architecture Steve Beyer, RLA Landscape Visualization **Bill Bowers** Landscape Design Dayna Fendrick, RLA, AICP Landscape Architecture Matt Horton Landscape Design Ken Natoli, RLA Landscape Architecture Robin Renfroe, RLA Landscape Architecture Anita Jenkins, AICP Bicycle/Pedestrian Design Randy Coen Transportation Planning/Design Wayne Hartt, P.E. Traffic Engineering Arnold Kenly, E.I. Transportation Design Jason Mosley Roadway Design Jeffory Perry, AICP Transportation Planning/Design Jerry Graham, E.I. Transportation Planning/Design Steve Pivnicki, P.E., AICP Traffic Engineering Pat Jennings, P.E. Drainage Dorothea Zysko, CE, PWS Ecological Services Sharon Jenkins-Owen, AICP Concept Planning Keith Morrow, RLA Urban Design/Resort Design Andrea Tyson, AICP Written Communications Jennifer Chase Graphic Design Danielle Johnson Written Communications

Katherine Chachere Computer Design/Graphics

Chris Pereira Computer Design/Graphics

David Place Computer Design/Graphics

I Introduction

Background Estero Boulevard Has Great Potential Streetscape Master Plan The Next Step

2 Estero Boulevard Today

Existing Conditions
Estero Boulevard Design Criteria
Design Analysis
North End
Core Area
Center Street/Fifth Avenue Master Plan
Civic Complex
Quiet Center
High Rise Resort
South End

3 Design Solutions

Developing Design Solutions
Design Solutions - Elements
North End
Core Area
Civic Complex
Quiet Center
High Rise Resort
South End

4 Implementation Strategies

Implementing the Designs
Implementation Strategies
Phasing
Estimated Opinion of Probable Cost
Funding the Vision
The Future

5 Appendix

Introduction

Section 1—Introduction

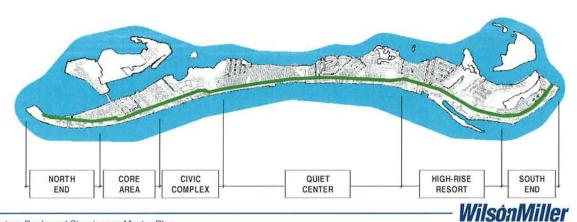
BACKGROUND

In 1995, the newly formed Town of Fort Myers Beach (the Town) initiated a visioning process to focus on implementing its long-term goals, one of which included beautifying Estero Boulevard. In January 1999, the Town of Fort Myers Beach Comprehensive Plan (the Comprehensive Plan) took effect. This document identified the Town's overall goals and established policies to implement them, guiding the area's future development and redevelopment. In the fall of 1999, the WilsonMiller team began working with the Town to initiate the beautification portion of the Comprehensive Plan, the Estero Boulevard Streetscape Master Plan.

Residents of the Town of Fort Myers Beach seek a sense of purpose, place, and a greater mix of activity and excitement along Estero Boulevard—it should be a destination of its own.

Vision

A central element of the Town's vision concentrates on beautifying Estero Boulevard, the seven-mile corridor that traverses the entire island. Objective 1-A of the *Comprehensive Plan* is to "Improve the functioning and appearance of Estero Boulevard as the premier public space and primary circulation route of Fort Myers Beach." The *Comprehensive Plan* summarizes this vision for the Town's future:


"The sidewalk and streetscape system has been continued beyond its 1997 terminus at the Lani Kai to the civic center and areas beyond. Motorists on Estero Boulevard during the peak tourist season move slowly but enjoy the beauty and interest of the public space, having learned to relax during the unavoidable season of the 'beach crawl.' Bicyclists and pedestrians share the public space but can also find quieter alternate routes off of the boulevard to get to their shopping or recreational destinations. Traffic calming measures have been introduced in areas that used to invite speeding whenever congestion lessened. Pedestrians now cross safely, and many people use the expanded fleet of trolleys to move around the island."

The *Comprehensive Plan* describes the six key components included in the vision for Estero Boulevard:

- · Do not four-lane the road
- Expand Times Square streetscape project
- Institute traffic calming measures
- · Put buildings closer to the street
- · Improve sidewalks and bikeways
- Require traffic impact analyses be prepared for new development

In addition, the *Comprehensive Plan* divides the road into the following geographical sections, which have been used consistently throughout the *Streetscape Master Plan*:

- North Area
- Core Area
- Civic Complex
- Quiet Center
- High Rise Resort
- · South End

Implementing the beautification portion of the Comprehensive Plan will help the Town of Fort Myers Beach achieve a long-term goal.

The community has helped create the excitement and momentum that will bring this vision to reality.

Section 1—Introduction

Reality

Estero Boulevard has matured over the past 40 years, largely without any special attention focused on its appearance. Although the area once felt like a tropical village, major portions now feel like "suburban everywhere." Today, motorists along Estero Boulevard see graying parking lots, heavily congested roads, utility poles, and ponding water after it rains.

Walking along Estero Boulevard today is frequently unsafe, uncomfortable, and unwelcoming. Shade is limited. The corridor offers no safe walking or bicycling access to Times Square, the Civic Complex, the Quiet Center, Santini Plaza, and most area businesses. Crossing the roadway is challenging and risky along some parts of Estero Boulevard. Some trolley stops have no benches, while others offer uncomfortable benches that are located too close to the road.

Although the community has an elementary school and a few churches, residents must make numerous off-island automobile trips to reach other major institutions, such as secondary schools, colleges, or hospitals. The permanent population of 7,000 swells to over 40,000 during peak season. Traffic begins queuing onto the island from the north as early as 10:00 a.m., reaching one- to four-mile backups during peak season. Traffic during these times slows to a walking pace.

Estero Boulevard has no clear sense of place, uniformity, or identity. It also lacks opportunities to support social and civic events, which are necessary to transform it into the island's premier public space.

ESTERO BOULEVARD HAS GREAT POTENTIAL

The time to begin transforming Estero Boulevard is now. The community deserves an inviting tropical village atmosphere—a place of beauty that is restful, comfortable, welcoming, and serene. Estero Boulevard has the potential to become the premier place on the island—the single element that can unify and bring character to the Town. It has a successful mix of retail, civic, and residential uses. It is rich in "ma and pa" retail shops; new and older franchise stores; affordable, fun housing and hotels; and moderate to upscale condominiums. This mix of uses is the basis for the opportunity of human interaction—for people to enjoy and use the street's environment.

The community's commitment to maintain Estero Boulevard as a two-lane corridor enhances the ability to create a pedestrian-friendly environment; a place where people feel welcome and safe to walk down the street. Land available for public improvements varies along the seven-mile corridor. This offers the perfect opportunity to design different solutions to capture the community's diverse characteristics. For instance, some segments were designed to urban standards and include street trees in grates along a wide sidewalk. Other segments accommodate beautifully landscaped medians.

Most notably, Estero Boulevard has great potential because its residents, Town Council, and Town staff are committed to improving the street, to move the Town forward rather than being satisfied with the status quo. The community wants to be involved, and that is the cornerstone for supporting efforts as complex as this one.

Achieving a New Reality

The Town is young, enterprising, and ready to invest energy and funds to improve its village life. Residents understand that together, they can realize this vision of "remaking" Estero Boulevard. The time is right for implementing this

Innovative techniques in streetscape design deliver the results that the community wants for a safer, more beautiful Estero Boulevard.

Section 1—Introduction

vision and attracting new local and regional investors to help make the vision a reality.

STREETSCAPE MASTER PLAN

The goal of this Streetscape Master Plan is to implement the vision established by the Town residents and as outlined in the Comprehensive Plan. The Streetscape Master Plan recreates Estero Boulevard into a pedestrian-friendly street by using innovative techniques in streetscape design to add more greenery, shade, and walkways; to calm traffic; to improve trolley access; and to develop safer methods for pedestrians to cross the street. The Streetscape Master Plan creates an enjoyable tropical sense of place, bringing added value to the street and to the community as a whole.

The developed and approved design solutions presented here implement the Comprehensive Plan's objectives related to Estero Boulevard. To help achieve its goal, the study effort focused on methods to recreate Estero Boulevard into a healthy, appealing form; to keep traffic in motion; and to generate a clean, attractive, walkable, welcoming environment. The conceptual designs presented as part of the Streetscape Master Plan are ready to be refined into design development plans.

The Process

In mid-November 1999, Town residents participated in a series of workshops during which they offered valuable insight to help develop the *Streetscape Master Plan*. The goal of these workshops was to identify and address issues, collect and prioritize the community's "wish list," and begin identifying the elements that eventually would be included in the final *Streetscape Master Plan*. The Charrette Summary Report (February 2000) summarizes the design concepts that were gathered during ten days of work, fun, and creativity. More than 200 people

worked together to breathe new life, color, safety, and efficiency into an overall design theme for this corridor—to create *their* Estero Boulevard.

The charrette process achieved a remarkable degree of community consensus and provided an effective forum to explore the planning and design ideas that helped shape the design solutions that have been incorporated into the Streetscape Master Plan. Workshop participants identified the elements that Estero Boulevard must have in order to transform it—the true heart of the Town into a more attractive, functional, safe, and enjoyable place to work, live, shop, and be entertained. Developed properly, Estero Boulevard will function as a center of public activity; provide access to residences, businesses, services, and entertainment; and provide better linkages to parks and open spaces. The redesigned street will provide new opportunities for social interaction. The designs that the community helped create will significantly improve mobility along Estero Boulevard by providing increased opportunities to walk, bicycle, and use the trolley. It also will relieve some of the single occupant vehicle trips that contribute toward the daily traffic congestion along this corridor.

Community Recommendations

General recommendations from the charrette participants included the following:

- Make Estero Boulevard pedestrian friendly
- Create greatly improved conditions for walking along and crossing the street
- Create functional travel ways for bicyclists
- Reduce dependency on automobile
- Balance the needs between residents and businesses
- Improve and better manage traffic

Section 1—Introduction

conditions throughout the corridor

- Improve trolley services and create fun places to wait
- Improve Americans with Disabilities Act (ADA) access throughout the corridor
- Incorporate curbs to improve drainage
- Segment Estero Boulevard for different solutions—do not create a single design for the entire corridor
- · Improve safety in the corridor
- Improve efficiency of automobile, bicycle, and pedestrian movements to reduce congestion
- Reduce traffic speeds at the South End
- Bury overhead utility lines

Additional Safety and Transit Elements

To include the appropriate safety and transit elements throughout the design, additional interviews with emergency services providers and trolley service providers were conducted.

The emergency services providers stressed the importance of their four-minute response time. They believe the best way to accomplish this goal is to maintain Estero Boulevard's existing center turn lanes. In those areas where the center turn lane does not exist, they suggest travel ways be at least 19 feet in width to accommodate areas for emergency vehicles to pass through traffic. Emergency services providers also suggested that enhancing the visibility of crosswalks should be a priority.

The trolley drivers suggested the need for more trolley pull-off areas and better management of pedestrian movements. The greatest challenges facing trolley drivers include merging into traffic, staying on schedule, and managing conflicts with bicyclists. The drivers also agreed that crosswalks need to be visually enhanced for the benefit of motorists, bicyclists, and pedestrians.

emergency access maintain a safe environment.

Designs to accommodate

THE NEXT STEP

The next step to recreating Estero Boulevard involves identifying existing conditions, developing design objectives/ criteria and alternatives, and developing the recommended designs. Section 2-Estero Boulevard Today, discusses existing conditions, design criteria, and design analysis of each segment. Section 3—Design Solutions, explores the elements involved in the design solutions and presents the selected option for each of the six roadway segments. Section 4— Implementation Strategies, identifies the recommended steps and strategies that the Town should consider in order to implement the adopted designs.

Estero Boulevard Today

EXISTING CONDITIONS

As discussed in the Existing Conditions Report (November 1999), Estero Boulevard supports a variety of the Town's functions. The corridor is the sole link onto and off of the island. New stores, lodging, condominiums, and single family housing; increased tourism; lack of schools and other institutions; and other land use demands all contribute to increased traffic along Estero Boulevard. In addition, recreational "cruising" adds to the traffic volumes, especially during evenings, weekends, and during a variety of island events. In recent years, residents and visitors have come to view Estero Boulevard as a graying, wide, ragged, puddle-lined. pole-lined, hot, roadway that is harsh on pedestrians, bicyclists, and motorists alike.

Ownership

Three different agencies have jurisdiction over portions of Estero Boulevard:

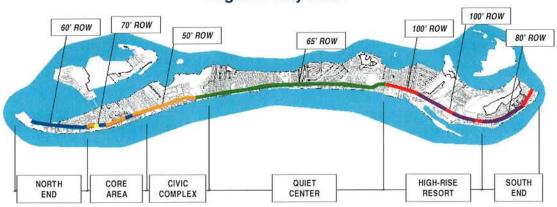
- Lee County maintains most of Estero Boulevard
- . The Town maintains the section of

Estero Boulevard north of San Carlos Boulevard (the North End)

 The state maintains Matanzas Pass bridge to the pedestrian signal

Existing Roadway System

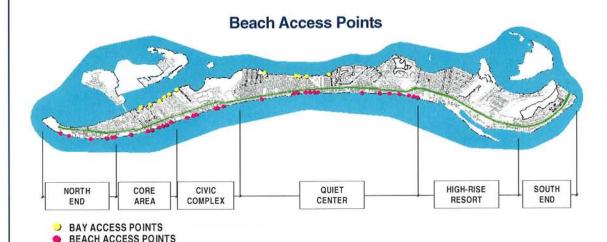
Estero Boulevard is the only roadway that traverses the entire length of the island. Local streets access the rest of the island from points along Estero Boulevard. Two bridges provide the transportation links to each end of the island. The Matanzas Pass bridge at the north end near Times Square connects San Carlos Island to the mainland. The Big Carlos Pass bridge at the south end of the island connects to Bonita Beach.


Roadway Width and Lane Arrangement

As identified in the table below, the rightof-way width and lane arrangement varies in each of the six segments.

Roadway Segment	Right-of-Way Width Lane Arrangement		
North End	60 feet	11-foot travel lanes	
Core Area	50 feet	11-foot travel lanes 12-foot center turn lane	
Civic Complex	50 feet	11-foot travel lanes 12-foot center turn lane	
Quiet Center	65 feet	11-foot travel lanes 12-foot center turn lane Transitions to 12-foot travel lanes 5-foot paved shoulders	
High Rise Resort	85-100 feet	11-foot travel lanes 12-foot center turn lane	
South End	85-100 feet	12-foot travel lanes 5-foot paved shoulders	

Right-of-Way Index

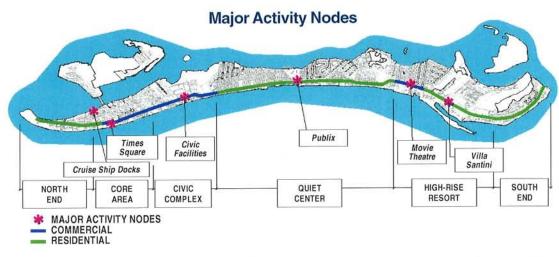

Traffic Volumes

Traffic volumes vary along Estero Boulevard from a low of 8,000 vehicles/ day in the North and South Ends to a high of more than 20,000 vehicles/day in the Core Area. During peak season, these figures increase approximately 12 percent. Estero Boulevard operates at or above capacity from the Quiet Center to the South End during the peak season.

Estero Boulevard is heavily congested in the Core Area and Civic Complex during season. These areas are characterized by a narrow 50-foot right-of-way, a lack of access management, backout/pull-in parking, and unpredictable pedestrian movements. The Core Area and Civic Complex generate much of the congestion that contributes to the low vehicle speed that characterizes this part of the corridor. During season, motorists can expect average speeds of 4 mph for most of the day. By nature, this low-speed area has resulted in a low crash rate for this section of the island. However, it still is important to improve traffic flow and reduce the congestion that characterizes this area. The Town's Comprehensive Plan does not allow four-laning the road nor adding a bridge. Therefore, developing an enhanced modal shift-that is, converting automobile traffic to pedestrian and bicycle movements—is the most feasible solution to ease traffic congestion through Estero Boulevard.

Traffic Generators

Motorists, pedestrians, and bicyclists all move toward the same attractions in the Town—shopping, entertainment, restaurants, hotels, and the beach. Estero Boulevard has more than 25 public beach access points. Motorists searching for beach parking generate a significant portion of the traffic congestion on Estero Boulevard. In addition, beach accesses offer very limited bicycle parking.


Safety

From 1997 to 1999, four intersections on Estero Boulevard were listed as high crash locations: Crescent Street, Palermo Circle, San Carlos Boulevard, and Donora Boulevard. Pedestrian and bicycle crash data from 1996 to 1999 list Palermo Street

and Bay Road as the intersections with the highest crash incidents.

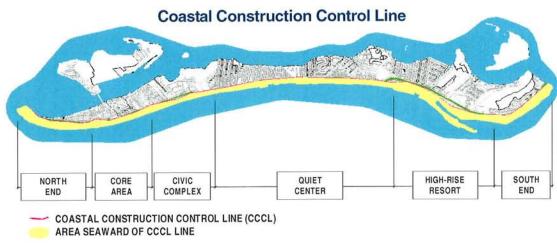
Drainage

North of Alva Drive through the Times Square area. Estero Boulevard has an underground storm drainage system (pipe system). A swale and pipe storm drainage system is located south of Flamingo Street. The area between Alva Drive and Flamingo Street has a poorly defined storm drainage system. For the majority of this area, stormwater runoff flows off the road onto adjacent property, generally to the east side of the road. In most cases, the runoff flows to the east down the side streets to the Matanzas Pass/Estero Bay. Additional drainage information collected during the study is included in the Appendix.

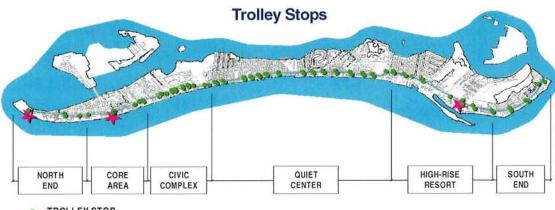
Utilities

The entire length of Estero Boulevard has gravity sewer, potable water, and force mains at various locations. These utilities should be disturbed only as required to support construction of the project.

Florida Power and Light (FP&L) has aerial electric power lines the entire length of Estero Boulevard. The lines around Times Square were buried during that area's redevelopment. Telephone and cable television lines also exist along the entire length of Estero Boulevard.

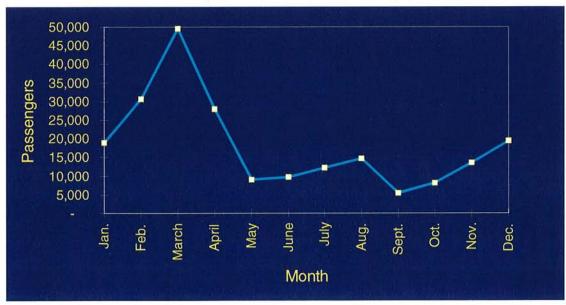

TECO/Peoples Gas is expanding its transmission system to include the Town. The utility plans to extend a 4-inch line under Matanzas Pass by April 2001. A 2-inch distribution line will continue down through the Civic Complex to the Red Coconut and up through the North End to the Pink Shell. The conceptual plan is to bury the distribution lines under the sidewalk, but the final location has not yet been determined.

Coastal Construction Control Line


Upon reviewing the proposed project and the state Coastal Construction Control Line (CCCL) maps for Lee County, it is apparent that several areas of the project fall seaward of the CCCL. Activities in areas seaward of the CCCL will require a permit from the Department of Environmental Protection (DEP). All structures (sidewalks, shelters, etc.) that fall within the CCCL must be designed according to DEP standards. Since the project is a significant distance from any coastal dunes, DEP likely will not require that all native vegetation be planted. However, DEP recommends using saltspray tolerant vegetation in any landscaping. In addition, the DEP may scrutinize any new lighting for its potential affect on sea turtles.

Pedestrian Facilities

Estero Boulevard has limited sidewalks throughout the corridor. In many locations, the sidewalks are very narrow, disappear through driveways, and blend into the edge of the travel lane. Sidewalks are often covered with sand (a problem created by poor drainage infrastructure) and frequently in need of repair. Puddles of water often cover portions of the sidewalks. ADA access is inadequate, and the corridor lacks places to sit, get a drink of water, and dispose of litter.


TROLLEY STOP
 TROLLEY PULL-OFF / SHELTER

Crossing Estero Boulevard is frequently challenging, with no safe refuges for pedestrians or bicyclists crossing the street. Motorists frequently overlook or ignore the existing crosswalks, placing pedestrians at risk. Likewise, pedestrians routinely ignore the existing crosswalks and cross the street where it's convenient for them. It has been observed that uncontrolled pedestrian crossings contribute to the traffic congestion in the Core Area and Civic Complex.

Transit

Lee County Transit operates a year-round trolley system through the corridor. Four trolleys run during in-season and two run during off-season. The system currently has 81 stops. Each trolley can carry 34 passengers. While the trolley is popular, many residents and visitors consider it unreliable. The graph below reflects the dramatic increase in trolley ridership during season.

Trolley Service - Annual Ridership

WilsonMiller

Bicycle Facilities

Bicycling Estero Boulevard is difficult. Since paved shoulders throughout the corridor are inconsistent, bicyclists either share the inadequate sidewalks with pedestrians or try to share the road with motor vehicles. In addition, the area has few bicycle racks that otherwise would encourage cycling as a convenient mode of transportation.

Landscape

Landscaping along Estero Boulevard is minimal, disorganized, and arbitrary. The road has very limited shade. Existing trees, mostly palms, are located at the outside edge of the sidewalk, forcing pedestrians to walk closer to travel lanes. Frequently, the landscaping is not maintained well. Residents have expressed concern about the future maintenance of any new landscaping.

Lighting

Decorative street lights and pedestrian lights are located throughout Times Square south to the Lani Kai. The rest of Estero Boulevard has standard-issue FDOT street lights. This high vehicular-level lighting is not conducive to pedestrian comfort. The lack of pedestrian-level lighting creates shadows and unlit areas that make certain areas feel unsafe.

Street Furniture

Street furniture, such as benches, trash receptacles, and bicycle racks are limited primarily to the Times Square area. Trash receptacles and advertising-adorned benches are located at trolley stops.

Introducing Walkable Communities Principles and Elements to Estero Boulevard

One resident described Estero Boulevard today as a "chaotic, nothing street." While this may be an overstatement, it is true that most of the area lacks identity, purpose, visual continuity, and place-making. Converting this area from a mixed suburban/urban commercial district to a walkable community requires intensive change; a high level of consensus among stakeholders; and new, long-term public and private reinvestments working from the vision that the Town developed.

During the charrette, Dan Burden of Walkable Communities presented the principles of transforming Estero Boulevard into a pedestrian-friendly environment. The main points of creating a walkable community are described below.

Walking Distance

Encourage walking by ensuring that community activities are located within a quarter-mile radius development pattern. In a walkable neighborhood or center, a range of residential, leisure, commercial, and educational activities focus around a quarter-mile radius. Most people will walk up to a quarter-mile; in an attractive area, they may walk up to a half-mile. Land use must be packaged to create a variety of attractions in this quarter- to half-mile limit. It is essential to mix activities to keep this space active. Many uses (eg., leisure and commercial) may be combined in one building and on each block.

Reduced Speed

Roadway speeds along Estero Boulevard must be moderate (20-30 mph are most common). Combining sidewalks, bike lanes, edge landscaping, and medians helps convert wide roads into tame, people-focused places.

Landscaped Edges and Walkways

Sidewalks should be on both sides of the street, with landscaping on both sides of the sidewalks. In areas that support commercial shopping activities, sidewalk widths of 12-14 feet are desirable. A width of 6 feet is an absolute minimum in residential areas.

Well Connected, Easy Crossings

Designs should incorporate high levels of connectivity and areas that allow pedestrians to cross streets safely and easily. Pedestrians will travel up to 150 feet out of their way to find an easy, safe crossing point of a "main street" environment such as Estero Boulevard. Organized crosswalks are needed every 300 feet to promote these crossings. Medians and curb extensions help define an inviting and well-used crossing. When a street is overly wide and travel speeds are high, refuge islands and medians help pedestrians safely cross the street.

Pedestrian Lighting

For decades, road building agencies have viewed pedestrian-scale street lamps as frill and fluff. Today, smart communities know that they must add benches, lighting, decorative features, and other amenities to create a sense of welcome. While this can add 10-15 percent to the total cost, the community recovers that cost through increased pride, tourism, and community spirit. Streets should be viewed as a living room or front porch—leave out the furniture and decorative trim, and the house loses much of its value. The same is true for Estero Boulevard.

Meet Five Basic Human Needs

The Estero Boulevard Streetscape Master Plan designs must address a complement of five basic human needs:

Security. The Estero Boulevard design needs to provide for both real and perceived security. Applying Crime Prevention Through Environmental Design (CPTED) design guidelines puts many "eyes on the street." This sense of security comes from nearby buildings, an abundance of human activity, open landscaping, lighting, and other design.

Convenience. To be useful and functional, Estero Boulevard needs to provide most of the commercial needs of the community, residents, and visitors. Once motorists park their cars, they should have no need to return to their vehicle until they are ready to leave the island. People working in the retail shops and restaurants should be encouraged to walk or ride bikes to their work places, to lunch, and to run errands.

Efficiency. People seek ways to make efficient use of their time. Pedestrian efficiency fully depends on the ability to take short walks between multiple needs and services. This efficiency can be achieved along Estero Boulevard by clustering development in pedestrian pockets—a tight combination of public space, shops, work places, parking garages, and residential needs.

Comfort. Along Estero Boulevard, pedestrians should find their comfort needs met through shade; breezes; convenient store placement; buffers; benches; litter canisters; clean, conveniently located restrooms; water fountains; gardens; and other details of the built environment.

Welcome. People feel a sense of welcome when they visit an attractive, relaxing place that has been developed with close attention to detail. The "building blocks" to create a sense of welcome along Estero Boulevard include island gateway entries; colorful buildings and awnings; comfortable trolley stops; well-kept walkways; public art; screening of dumpsters, parking lots, and other elements that offend the senses; nicely landscaped streets; activities; diversity and choice; a clean, well-kept environment; and low traffic speeds.

By incorporating these five elements into the design objectives, the Town can create a successful *Estero Boulevard Streetscape Master Plan*.

ESTERO BOULEVARD DESIGN CRITERIA

To achieve a walkable community, the following design criteria were developed specifically for the *Estero Boulevard Streetscape Master Plan*. These criteria were used to evaluate each design option.

- Comprehensive Plan Consistency.
 The Town's Comprehensive Plan was reviewed carefully and used as a guide to develop recommendations.
 The applicable objectives and policies are attached in Appendix A.
- Public Input. The charrette provided a forum for the public to offer suggestions, concerns, and put pencil to paper and help develop design ideas. Following the charrette, five public presentations of the design concepts were made. The public also offered comments and suggestions during these presentations. In addition, discussions were held with emergency services providers and trolley service providers to gain their input on the design concepts.
- Utilize Existing Right-of-Way. All design solutions were developed on the basis of remaining within the existing right-of-way. Designing any options outside of the right-of-way would lead to the potential of condemning property, which would substantially increase the cost estimates of the improvements.
- Design is "Traffic Neutral" or "Traffic Positive." It was not an objective of this plan to solve the island's traffic congestion. However, the design criteria assumed that all design solutions would do no harm to the existing traffic conditions; that all solutions would be either "traffic neutral" or "traffic positive."

- Design is Neutral or Positive to Emergency Services. Emergency services providers discussed their response constraints and needs. These issues were carefully considered during the evaluation of each design option.
- Enhance Pedestrian and Bicycle Safety. Each design option considered how to best enhance the safety of pedestrians and bicyclists.
- Improve Trolley Operations. Each design option considered how to best improve trolley operations.
- Enhance Landscaping. Each design includes attractive landscaping to provide shade, create a protective edge between pedestrians and motorists, and improve the appearance of Estero Boulevard.
- Analyze Left Turn Lanes. Several design options that removed or changed the function of left turn lanes were developed. Each of these options was evaluated based on how they would affect emergency services providers, traffic operations, surrounding residents, and businesses.
- Design Assumptions. During the charrette, the community identified two elements that should be established for the entire length of Estero Boulevard: improve the drainage with curb and gutter and underground the utilities. These two elements are included in all of the design solutions.

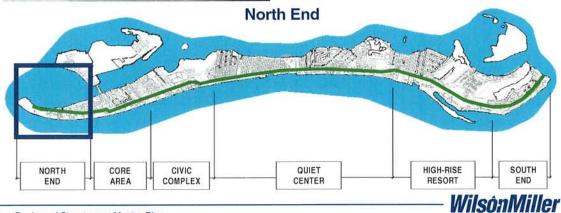
DESIGN ANALYSIS

Developing the Design Options

During the workshops, the community achieved consensus on a number of significant design issues and priorities for the projects to be included in the *Streetscape Master Plan*. The community requested that Estero Boulevard be segmented and have appropriate solutions identified and developed for each segment. To design the *Streetscape Master Plan*, the same six street segments identified in the Town's *Comprehensive Plan* were used:

- North End
- · Core Area
- Civic Complex
- Quiet Center
- High Rise Resort
- · South End

Several options for each segment were evaluated to develop the design solutions. The existing conditions/challenges in each



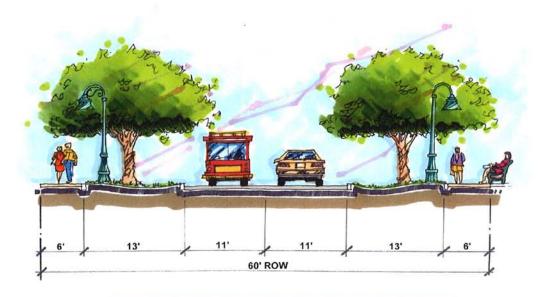
segment, the design alternatives that were presented for each segment, the design criteria in the form of pros and cons, and a summary of the options in a comparison chart are presented below. Section 3—Design Solutions discusses the design solutions adopted for each segment.

NORTH END

Existing

At 3,885 linear feet, the North End is the shortest segment in the Streetscape Master Plan. It has 22 feet of pavement (two 11-foot travel lanes) in a 60-foot rightof-way. Traffic volume and speeds are low. A sidewalk follows the west side of the road and then switches to the east side, forcing pedestrians either to cross the road to stay on the sidewalk, or to walk in the street. The roadway and sidewalk edges are poorly defined. The sidewalk, driveways, and travel lanes meld together. The edge of the pavement has crumbled from years of automobile and truck traffic. Dirt, gravel, and sand cover the roadway edges and sidewalk. Bowditch Point, a public park and beach access, is the northernmost point of this segment. While Bowditch Point has no public parking, it has an existing trolley stop. Five additional beach access points are located in the North End. This segment has some shade, but the landscaping is not uniform or consistent. Street lights are FDOT standard-issue Cobra-head lights.

Estero Boulevard Streetscape Master Plan June 5, 2000 Section 2, Page 9



Design Options

Three options were evaluated for the North End.

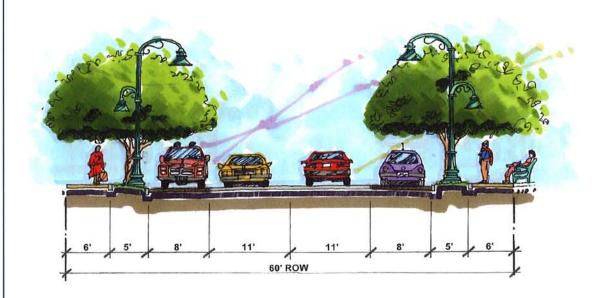
Option A. Option A maintains the existing 11-foot travel lanes, provides generous 13-foot wide landscaped edges, and 6-foot sidewalks.

North End Option A Landscape Edges/Sidewalks

Pros

- No added street pavement
- Maximum landscape area
- Shade
- Pedestrian positive
- Traffic neutral
- Trolley neutral
- Emergency Services neutral
- Minimum cost
- Consistent with Comp Plan

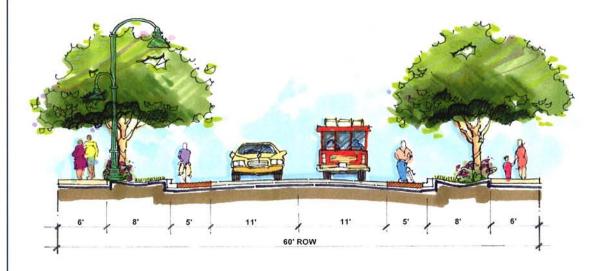
Cons Cons


- Bicycle neutral
- No additional parking

Option B. Option B maintains the 11-foot travel lanes, provides parking on both sides of the street, has adequate width for landscaped edges, and 6-foot sidewalks.

North End Option B With Parking

Pros


- Added public parking
- Parking revenue generator
- Pedestrian positive
- Shade
- Trolley neutral
- Emergency Services neutral
- Consistent with Comp Plan

- Added pavement
- Minimum landscape area
- Bicycle negative
- Traffic negative
- Neighborhood impacts

Option C. Option C maintains the 11-foot travel lanes, provides 5-foot colorized bike lanes, has adequate width for landscaped edges, and 6-foot sidewalks.

North End Option C With Bike Lanes

Pros

- Bicycle positive
- Pedestrian positive
- Shade
- Trolley neutral
- Traffic positive
- Emergency Services positive
- Consistent with Comp Plan

- Added pavementNo added parking

Comparison Matrix. While each option meets many of the design criteria, Option A does not enhance bicycle safety and Option B is viewed as "traffic negative" because it adds cars to the residential area. Because Option C meets all of the design criteria, it is selected as the design solution for the North End.

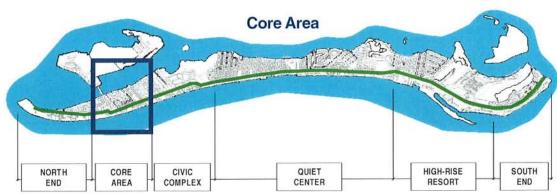
Comparison Matrix

	OPTION "A" Landscape edges / sidewalks	OPTION "B" With parking	OPTION "C" With bike lanes
Comprehensive Plan consistency	0	0	0
Utilize existing right-of-way	0		<u> </u>
Traffic neutral or positive	<u> </u>		<u> </u>
Emergency Services neutral or positive	<u> </u>	0	<u> </u>
Enhance pedestrian safety	0	<u> </u>	0
Enhance bicycle safety			0
Improve trolley operations	<u> </u>	<u> </u>	<u> </u>
Enhance landscaping	0	0	<u> </u>
Analyze left turn lanes			

CORE AREA

Existing

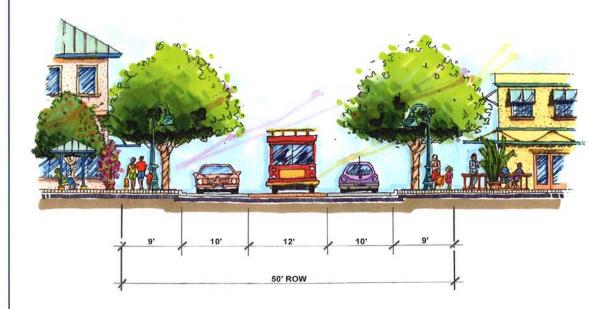
The Core Area is 4,259 linear feet. It has the narrowest right-of-way and the most congestion on the island. It has 32 feet of pavement (two 10-foot travel lanes and a 12-foot center turn lane) in a 50-foot rightof-way. On the west side (beach side) from Times Square to the Lani Kai, the 10-foot sidewalk is made of colorful pavers. Even at 10 feet, the width of the sidewalk is inadequate during peak season, as pedestrians can be seen overflowing into the street. The width of the concrete sidewalk on the east side varies. The edges are poorly defined; driveways predominate in many areas. The Town's only pedestrian signal is located in Times Square. In season, the pedestrian signal is turned off during part of the peak hours (11 a.m. to 4 p.m.). A volunteer crossing guard helps pedestrians cross the road and helps manage the flow of traffic in this congested area. When the crossing guard leaves at 4 p.m., pedestrians begin using



the signal and interrupt/stop the northbound traffic flow. Other crosswalks in the area have standard markings (paint/signs).

The Core Area is densely settled with intense commercial and hotel uses. Nearly all properties have individual driveways. This lack of access management necessitates the existing center turn lane. The area's high density and intense activity increase pedestrian traffic. A major activity node is located around the intersection of Estero Boulevard, Crescent Street, and Fifth Avenue. Lynn Hall Memorial Park offers beach access and public parking. The Core Area has four additional beach accesses.

Trolley stops are numerous in the Core Area. Palm trees planted in tree grates along the back of the sidewalk provide limited shade. Street lights and pedestrian lights were installed as part of the redevelopment of Times Square.



Design Options

Four design options were evaluated for the Core Area.

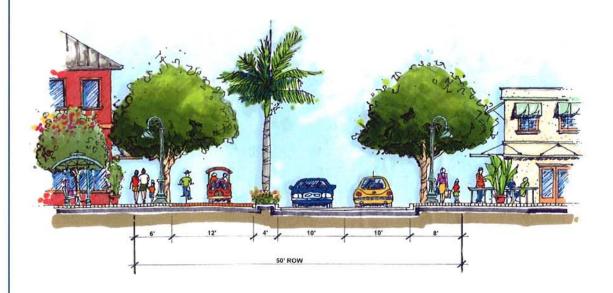
Option A. Option A includes 10-foot travel lanes, a 12-foot center multipurpose lane, and 9-foot sidewalks. The multipurpose lane allows motorists to make left turns. It also allows the trolleys to traverse the area.

Core Area Option A Multipurpose Lane – Center

Pros

- Trolley positive
- Emergency Services positive
- Sidewalks both sides
- Shade
- Maintains left turn
- Consistent with Comp Plan

1 Cons


- Impacts deliveries
- Passing issues
- Bicycle neutral
- Traffic negative
- Trolley passenger unloading
- Liability issues
- Uniform traffic manual

WilsonMiller

Option B. Option B includes 10-foot travel lanes, a 12-foot dedicated trolley lane on the west (beach) side of the road, a 4-foot median separator between the travel lanes and trolley lane, an 8-foot sidewalk on the east side of the road, and a 6-foot sidewalk on the west side of the road.

Core Area Option B Multipurpose Lane – Side

Pros

- Trolley positive
- Sidewalks both sides
- Pedestrian positive
- Bicycle positive
- Shade
- Consistent with Comp Plan

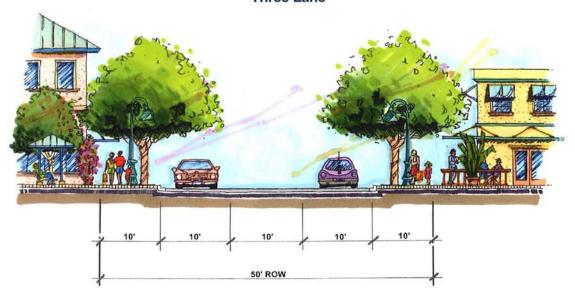
- Traffic negative
- Passing issues
- Emergency Services / trolley moving in "perceived" wrong direction
- Emergency Services negative
- New trolley type required
- Liability issues

Option C. Option C includes 12-foot travel lanes, 5-foot colorized bike lanes, and 8foot sidewalks.

Core Area Option C Two Lane

Pros

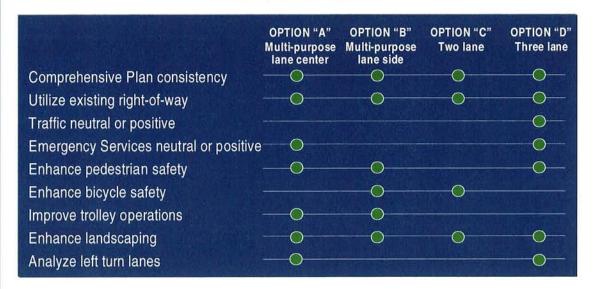
- Shade
- Increased pedestrian capacity
- Bicycle positive
- Consistent with Comp Plan


- Emergency Services negative
- Traffic negative
- Pedestrian unfriendly
- Greater accident potential
 Loss of residents' flexibility
- No crosswalk refuge

Option D. Option D includes 10-foot travel lanes, a 10-foot center turn lane, and 10-foot sidewalks.

Core Area Option D Three Lane

Pros


- Emergency Services positive
- Traffic neutral
- Pedestrian positive
- Curb defines edge
- Access remains the same
- Shade
- Implements Comp Plan

- Pedestrian / bicycles share space
- Bicycle neutral
- Trólley neutral

Comparison Matrix. Each option meets several of the design criteria. However, Options A, B, and C negatively affect traffic as they encroach or eliminate the center turn lane. The commitment to do no harm to the current traffic conditions eliminates Options A, B, and C as viable design solutions. Therefore, Option D is selected as the design solution for the Core Area.

Comparison Matrix

CENTER STREET/FIFTH AVENUE MASTER PLAN

As a supplement to the overall *Estero Boulevard Streetscape Master Plan* work, the potential for developing a gateway at the Center Street/Fifth Avenue intersection was explored. The *Center/Fifth Master Plan* was intended to examine the possible design alternatives that could be implemented at the foot of the Matanzas Pass bridge at the north end of Estero Boulevard.

The design criteria included those discussed earlier as well as several specific objectives that were unique to the intersection:

- Permitting all turning movements at the intersection (presently a number of left turns are prohibited)
- Minimizing any increased delay as a result of allowing turning movements at the intersection
- Reducing the circuitous travel path now required for some motorists leaving the island to travel north over the bridge
- Increasing opportunities for landscape and beautification treatments (the "gateway" concept)
- Examining the pedestrian/traffic flow conflicts in the Time Square area
- Developing design alternatives to help manage pedestrian movements

To develop the *Center/Fifth Master Plan*, detailed traffic volume data (24-hour and peak hour turns), crash statistics, and pedestrian movement data were collected. Eight hours of videography facilitated the analysis of the various alternatives, especially those involving pedestrian movements. The following three design alternatives were developed for analysis:

Option A. The status quo alternative leave the existing two-way stop control in place (no attempt to add turning movements was made to this alternative).

Option A Status Quo

Pros
- Minimize delays
- Operations and maintenance
- Fewer conflict points
- Cost

Cons

Restricted movements
 Side street access
 More pedestrian conflicts
 No gateway
 Does not further FMB Comp Plan

Option B. The fully signalized intersection improvements, including adding the appropriate turn lanes.

Option C. A roundabout, including the appropriate approach lane modifications and continuous "by-pass" lanes as appropriate.

summaries. In addition, several computer simulations of the roadway network were performed to analyze how pedestrians affect the traffic flow and to analyze the ability of "heavy vehicles," including the Town's Fire Control District's largest vehicle, to navigate the roundabout alternative.

Option B Signalization

Pros

- All movements allowed Side street access Coordination
- Adaptability

Cons Cons

- Delays
- Highest number of conflict points
- Operations and maintenance
- ROW consumed
- No gateway
- Inconsistent with FMB Comp Plan

All of the alternatives were analyzed with the most recently available computer software. The Appendix includes the Roundabout Justification Study, consistent with FDOT guidelines; a detailed Estero Boulevard Roundabout Design Report, as well as level of service performance evaluations and all analysis details and

Option C Roundabout

Pros

- Allows all movements
- Reduced delay
- Safety
- Minimize operations / maintenance
- Cost
- Gateway
- Implements FMB Comp Plan policies

- Unfamiliar
- Operational issues
- Cost

Pedestrian movement conflicts in the Times Square area were identified and three design alternatives were developed:

Option A. A pedestrian tunnel.

Pros

Minimal auto / pedestrian conflicts

Cons

- Realign / raise road
- Parking / access / trolley stop impacts
- Perceived security issue
- Loss of pedestrian visual connection
- Probable pedestrian / auto conflicts shift
- Potential area economic impacts
- Ongoing maintenance / potential flooding
- Major financial investment
- Inconsistent with FMB Comp Plan

Option B. A pedestrian overpass.

Option B Pedestrian Overpass

Pros

Minimal auto / pedestrian conflicts Public gathering place / opportunity Architectural "gateway" opportunity Implements FMB Comp Plan policy

Cons

People will not use it Pedestrian / auto conflicts remain Business visibility impacts Public / private partnership required Major financial investment Liability issues

Option C. At-grade improvements intended to channel pedestrian movements and restrict pedestrian/vehicle conflicts.

Each design alternative was examined in detail using a variety of criteria, including:

- Impact on the roadway and surrounding lands (road grade change, driveway closures, lost parking, etc.)
- Potential for utilization (would pedestrians actually use the alternative)
- Likelihood that existing or new conflicts would remain

Pros

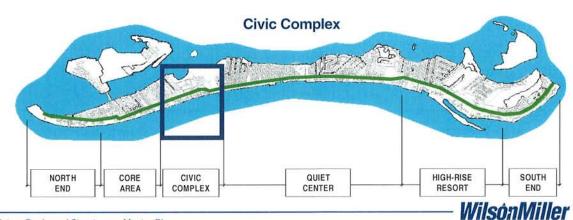
People will use it
Reinforces pedestrian environment
Low vehicular speed
Short crossing distance
Maintains pedestrian access to area
Minimal financial investment
Crossing guard improves traffic flow
Gateway opportunity
Implements FMB Comp Plan policies

Cons

Probable pedestrian / auto conflicts
Maintenance of crossing guard program
Impaired "sight line" location

CIVIC COMPLEX

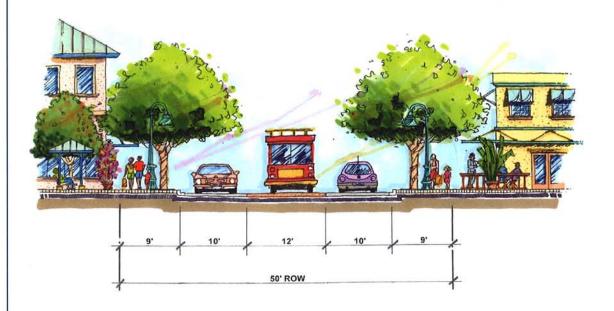
Existing


The Civic Complex is 4,412 linear feet. Like the Core Area, it is densely developed. It has 32 feet of pavement (10-foot travel lanes and a 12-foot center turn lane) in a 50-foot right-of-way. The numerous driveway connections to Estero Boulevard require that the center lane continue through this area. A sidewalk is located along the east side (Bay side) of the road. The edges are poorly defined, with no definition between the edge of the travel lane, the sidewalks, and driveways. The sidewalks are covered with sand and frequently collect puddles of water. Crosswalks have standard markings (paint/ signs).

An activity node forms around the Town Hall, Topps grocery store, and the library. The Civic Complex area has seven beach access points. The area has no landscaping to provide shade. Street lights are the FDOT standard-issue Cobra-head lights.

Design Options

The Civic Complex has many of the same conditions as the Core Area: the 50-foot right-of-way, the same traffic congestion issues, and high pedestrian volumes. Therefore, the four options that were developed for the Core Area also were used in the Civic Complex.



Option A. Option A includes 10-foot travel lanes, a 12-foot center multipurpose lane, and 9-foot sidewalks. The multipurpose lane allows motorists to make left turns. It also allows trolleys to traverse the area.

Civic Complex Option A Multipurpose Lane – Center

Pros

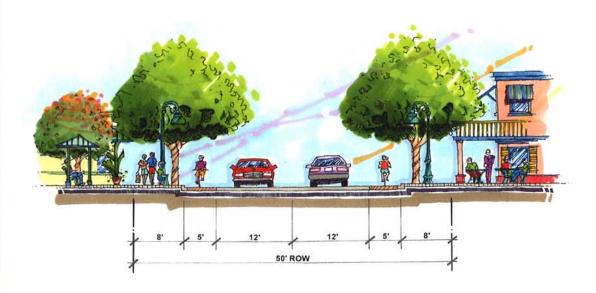

- Trolley positive
- Emergency Services positive
- Sidewalks both sides
- Shade
- Maintains left turn
- Consistent with Comp Plan

- Impacts deliveries
- Passing issues
- Bicycle neutral
- Traffic negative
- Trolley passenger unloading
- Liability issues
- Uniform traffic manual

Option B. Option B includes 10-foot lanes, a 12-foot dedicated trolley lane on the west (beach) side of the road, a 4-foot median separator between the travel lanes and trolley lane, an 8-foot sidewalk on the east side of the road, and a 6-foot sidewalk on the west side of the road.

Civic Complex Option B Multipurpose Lane – Side

Pros


- Trolley positive
- Sidewalks both sides
- Pedestrian positive
- Bicycle positive
- Shade
- Consistent with Comp Plan

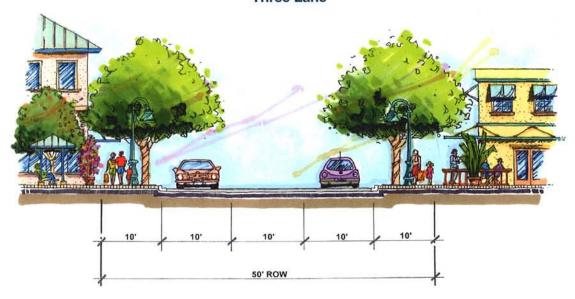
- Traffic negative
- Passing issues
- Emergency Services / trolley moving in "perceived" wrong direction
- Emergency Services negative
- New trolley type required
- Liability issues

Option C. Option C includes 12-foot travel lanes, 5-foot colorized bike lanes, and 8foot sidewalks.

Civic Complex Option C **Two Lane**

Pros

- Shade
- Increased pedestrian capacity
- Bicycle positive
- Consistent with Comp Plan

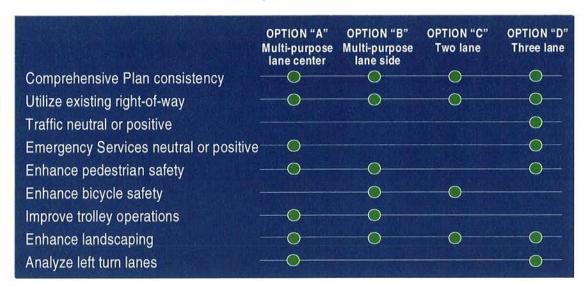

- Emergency Services negative
- Traffic negative
- Pedestrian unfriendly
- Greater accident potential
 Loss of residents' flexibility
- No crosswalk refuge

Option D. Option D includes 10-foot travel lanes, a 10-foot center turn lane, and 10-foot sidewalks.

Civic Complex Option D Three Lane

Pros

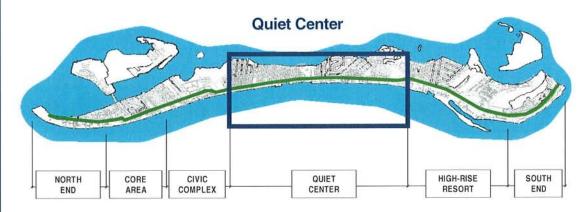
- Emergency Services positive
- Traffic neutral
- Pedestrian positive
- Curb defines edge
- Access remains the same
- Shade
- Implements Comp Plan


- Pedestrian / bicycles share space
- Bicycle neutral
- Trólley neutral

Comparison Matrix. Each option meets several of the design criteria. However, Options A, B, and C negatively affect traffic as they encroach or eliminate the center turn lane. The commitment to do no harm to the current traffic conditions eliminates Options A, B, and C as viable options. Therefore, Option D is selected as the design solution for the Civic Complex.

Comparison Matrix

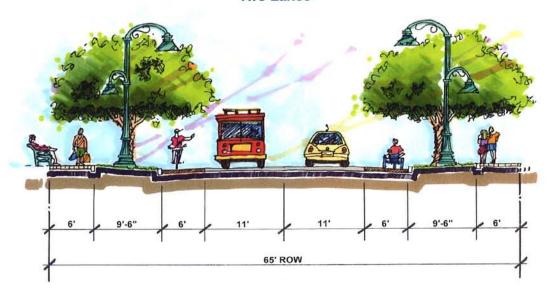
QUIET CENTER


Existing

At 11,979 linear feet, the Quiet Center is the longest segment in the *Streetscape Master Plan*. It is primarily a single family residential area. It has 32 feet of pavement in a 65-foot right-of-way. The center turn lane continues from the Civic Complex into the Quiet Center for a short distance before the roadway becomes two lanes with paved shoulders. The east side of the road has a poorly maintained sidewalk with poorly defined edges.

This segment has several trolley stops. Crosswalks are marked with white paint and standard pedestrian crossing signs at beach access points. Landscaping adjacent to the right-of-way is not uniform. Lighting is FDOT standard-issue Cobrahead street lights.

A Publix store is currently under construction. When complete this year, it will form an activity node within the Quiet Center, bringing the area more automobile, pedestrian, and bicycle traffic.



Design Options

Two options were evaluated for the Quiet Center.

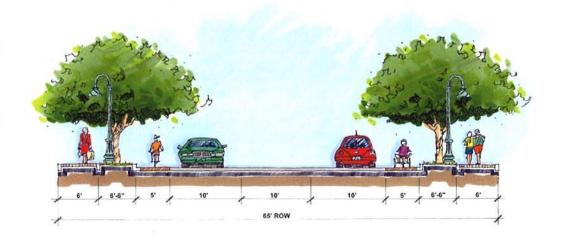
Option A. Option A includes 11-foot travel lanes, 6-foot colorized bike lanes, 9½-foot landscaped edges, and 6-foot sidewalks.

Quiet Center Option A Two Lanes

Pros

- Pedestrian positive
- Traffic neutral
- Emergency Services neutral
- Bicycle positive
- Shade
- Consistent with Comp Plan

Cons Cons


- Trolley neutral

Option B. Option B includes 10-foot travel lanes, a 10-foot center turn lane, 6-foot bike lanes, 6½-foot landscaped edges, and 6-foot sidewalks.

Quiet Center Option B Three Lanes with Center Turn Lane

Pros

- Pedestrian positive
- Bicycle positive
- Shade
- Traffic positive
- Emergency Services positive
- Consistent with Comp Plan

Cons

- Trolley neutral

Comparison Matrix. Both options meet most of the design criteria. The north end of the Quiet Center has an existing center turn lane that the community wishes to maintain. Both options were selected as the design solution for the Quiet Center.

Comparison Matrix

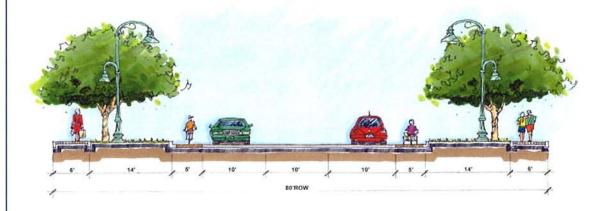
	OPTION "A" Two lanes	OPTION "B" Three lanes w/ center turn lane
Comprehensive Plan consistency	0	<u> </u>
Utilize existing right-of-way	0	<u> </u>
Traffic neutral or positive	0	0
Emergency Services neutral or positive	0	0
Enhance pedestrian safety	0	0
Enhance bicycle safety		<u> </u>
Improve trolley operations		
Enhance landscaping	0	0
Analyze left turn lanes		0

HIGH RISE RESORT

Existing

At 7,277 linear feet, the High Rise Resort area mostly comprises high-density condominiums and retail commercial. The right-of-way widens to 85 feet, but the pavement width continues at 32 feet. A center turn exists through most of the segment. Within the wider right-of-way, the edges are better defined as the sidewalk on the east side of the road is set back approximately 12 feet from the pavement's edge. This sidewalk was designed and built with funding from Transportation Efficiency Act (TEA-21) funds. No drainage improvements were made when the sidewalk was designed and built; rather, it was constructed on existing ground elevation immediately adjacent to drainage swales. According to state design standards, handrails are required along sidewalks where a retaining wall precludes filling the drainage swale. However, this is not conducive to creating an attractive sidewalk. Overall, the community is dissatisfied with the design and construction of the sidewalk in this area. Crosswalks are marked with white paint, but the high traffic speeds in the area make these unsafe pedestrian crossings.

The High Rise Resort area has two activity nodes: one around the movie theater and one around Villa Santini Plaza. This segment of Estero Boulevard has only one public beach access point.



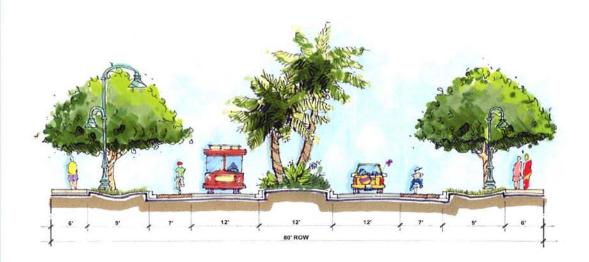
Design Options

Three options were evaluated for the High Rise Resort.

Option A. Option A maintains the 10-foot center turn lane and includes 10-foot travel lanes, 5-foot colorized bike lanes, 14-foot landscaped edges, and 6-foot sidewalks.

High Rise Resort Option A Three Lanes with Center Turn Lane

Pros


- Pedestrian positive
- Bicycle positive
- Landscaping edge opportunities
- Traffic calming
- Build w/ above-ground utilities
- Traffic positive
- Emergency Services positive
- Consistent with Comp Plan

- Speed of vehicles
- Trolley neutral

Option B. Option B includes a 12-foot landscape median, 12-foot travel lanes, 7-foot colorized bike lanes, 9-foot landscaped edges, and 6-foot sidewalks.

High Rise Resort Option B Two Lanes with Narrow Median

Pros

- Pedestrian positive
- Bicycle positive
- Landscaping median / edge opportunities
- Emergency Services neutral
- Traffic calming
- Traffic positive
- Consistent with Comp Plan

- Some driveway conflicts
- Trolley neutral

Option C. Option C includes a 20-foot landscaped median, 12-foot travel lanes, 7-foot colorized bike lanes, 5-foot landscaped edges, and 6-foot sidewalks.

High Rise Resort Option C Two Lanes with Wide Medians

Pros

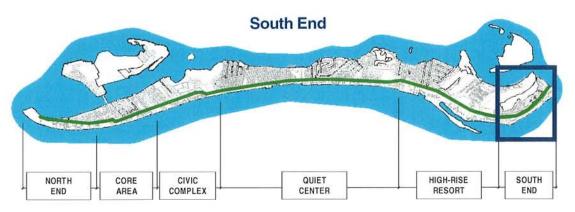
- Pedestrian positive
- Improves pedestrian crossing
- Bicycle positive
- Strong median landscaping
- Limited edge landscaping
- Emergency Services neutral
- Traffic calming
- Traffic positive
- Left turn lanes
- Consistent with Comp Plan

- Trolley neutral
- Minimal driveway conflicts

Comparison Matrix. All of the options meet most of the design criteria. However, Options A and B do not enhance pedestrian safety to the same degree as Option C; therefore, Option C is selected as the design solution in the High Rise Resort area.

Comparison Matrix

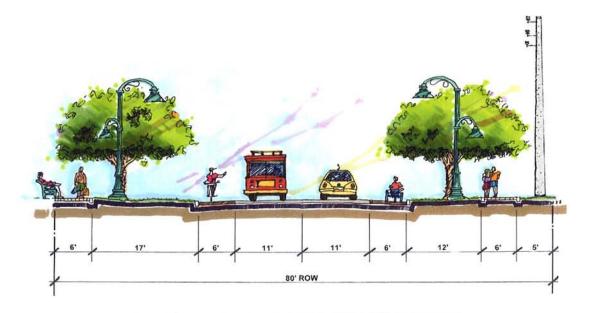
	OPTION "A" Three lanes w/ center turn lane	OPTION "B" Two lanes w/ narrow median	OPTION "C" Two lanes w/ wide medians
Comprehensive Plan consistency	0	0	
Utilize existing right-of-way	0	0	0
Traffic neutral or positive	0	0	0
Emergency Services neutral or positive	0	<u> </u>	0
Enhance pedestrian safety			<u> </u>
Enhance bicycle safety	0	<u> </u>	<u> </u>
Improve trolley operations			
Enhance landscaping	0	0	0
Analyze left turn lanes	0	0	0



SOUTH END

Existing

At 4,447 linear feet, the South End is exclusively single family residential adjacent to the roadway, with driveways directly accessing Estero Boulevard. The right-of-way varies from 85-100 feet, with 32 feet of existing pavement. A sidewalk is located on the east side of the roadway. This segment has no activity nodes or public beach access points.



Design Options

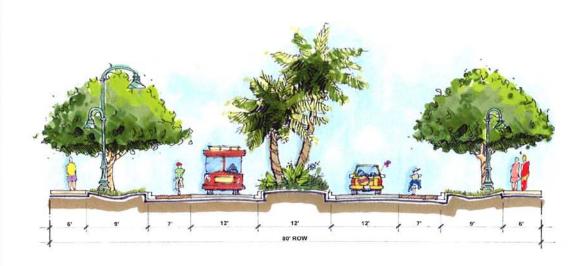
Two options were evaluated for the South End.

Option A. Option A includes 11-foot travel lanes, 6-foot colorized bike lanes, 12-foot landscaped edges, 6-foot sidewalks, and a 6-foot utility easement (if necessary).

South End Option A Two Lanes

Pros

- Better utilization of right of way
 - Pedestrian positive
- Bicycle positive
- Emergency Services neutral
- Shade
- Built with overhead power lines
- Consistent with Comp Plan


Cons Cons

- Speed of traffic
- Trolley neutral

Option B. Option B includes a 12-foot landscaped median, 12-foot travel lanes, 7-foot colorized bike lanes, 9-foot landscaped edges, and 6-foot sidewalks.

South End Option B Two Lanes with Median

Pros

- Pedestrian positive
- Bicycle positive
- Landscaping median / edge opportunities
- Émergency Services neutral
- Traffic calming
- Traffic positive
- Consistent with Comp Plan

- Trolley neutral
- Multiple driveway conflictsSingle family impacts

Comparison Matrix. Both options meet most of the design criteria. However, the medians in Option B would block the driveway entrances to many homes along Estero Boulevard; therefore, Option A is selected as the design solution for the South End.

Comparison Matrix

	OPTION "A" Two lanes	OPTION "B" Two lanes w/ median
Comprehensive Plan consistency	<u> </u>	0
Utilize existing right-of-way	<u> </u>	0
Traffic neutral or positive		0
Emergency Services neutral or positive		
Enhance pedestrian safety	<u> </u>	0
Enhance bicycle safety	O	0
Improve trolley operations		
Enhance landscaping	0	0
Analyze left turn lanes	0	

Design Solutions

DEVELOPING DESIGN SOLUTIONS

During the workshops, the community achieved consensus on a number of significant design issues and priorities for the projects that they want included in the *Streetscape Master Plan*.

The community requested that WilsonMiller segment Estero Boulevard and identify and develop appropriate solutions for each segment. To design the *Streetscape Master Plan*, the same six street segments that the community identified in the Town's *Comprehensive Plan* were used:

- North End
- · Core Area
- Civic Complex
- Quiet Center
- High Rise Resort
- · South End

DESIGN SOLUTIONS— ELEMENTS

Each of the six road segments presents its own unique issues and challenges. Therefore, specific design solutions were developed based on each segment's characteristics. The community's desire and values for a livable community have been incorporated into the six design solutions. Combined, these segments incorporate the tropical village theme for all seven miles of Estero Boulevard.

The following section discusses the design solutions adopted by the Town Council on April 3, 2000 and May 1, 2000. The design solutions for each segment include the following elements:

- Roadway Cross-section
- · Gateways (Core Area and South End)
- Traffic Management Techniques
- Trolley Stops and Crosswalks
- Landscaping
- Lighting

Each design solution is in conceptual form. Prior to beginning any construction, the steps outlined in Section 4—

Implementation Strategies, must be completed, including the creation of the more refined and detailed design development plans.

Cross-sections

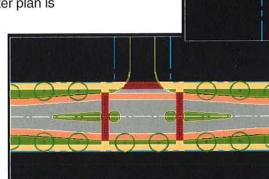
In designing each cross-section, considerable effort was made to provide separation among roadway users: motorists, bicycles, and pedestrians. All cross-sections include travel lanes and sidewalks on both sides of the street. Most sections include colorized bike lanes. Depending on the right-of-way width within any given segment, the widths of the travel lanes, sidewalks, and bike lanes vary. Street trees placed either between the sidewalk and travel lane or in tree grates within the sidewalk provide much-needed shade. All cross-sections include the design assumptions that, as part of the final improvements, roadway drainage will be enhanced and aerial utilities will be placed underground.

Cross-section Cost Estimates

For each of the six segments within the corridor, an associated cost estimate has been developed for its selected cross-section. The estimated costs are related to the length of the specific segment and the following elements:

- Roadway work
- · Drainage with curb and gutter
- Sidewalks

All of the cross-section cost estimates include a low and high range. The low range assumes at a minimum, milling and resurfacing, adding sidewalks, shoulder pavement, curbs, and minor drainage improvements. The high range assumes a total reconstruction of the roadway with major drainage improvements. Cost estimates reflect construction costs only and do not include final design (design development) costs. For the purposes of budgeting, a 20 percent contingency fee should be added.



Gateways

The community wants to create attractive, welcoming gateways at the island's entrance points. Under separate contract from this Streetscape Master Plan, a plan for the gateway feature at the foot of the Matanzas Pass bridge was developed for the intersection of Center Street and Fifth Avenue. The gateway master plan is discussed in detail in the

Core Area section.

A conceptual design for the gateway feature at the San Carlos bridge includes an area south of the bridge, the bridge itself, and an area north of the bridge. The conceptual design is included in the South End section of this document.

Refuge Island

Roundabout

Bulb Out

Traffic Management Techniques

Traffic management techniques (TMTs), also known as traffic calming techniques, are used to achieve the following:

- Slow traffic in areas of high speed
- Better manage the conflicts among motorists, pedestrians, and bicyclists in congested areas

Primary TMTs slow traffic by implementing a physical change in the roadway that deflects the travel path of the motorists. Secondary TMTs break up the long, straight appearance of the roadway by focusing the motorists' attention on shorter view segments. For the purpose of the Streetscape Master Plan, three primary types of TMTs and two typical secondary TMTs were identified for Estero Boulevard.

Primary TMTs

Roundabouts. Roundabouts are intersection control devices generally designed as raised, landscaped islands. By design, roundabouts force motorists to decrease their speed to maneuver around the island.

Refuge islands. Designed as raised islands in the center of the street, refuges protect pedestrians from traffic. Refuge islands may be designed to deflect the travel path of a motorist and narrow the travel lane, thereby reducing vehicle speed.

Bulb outs. Bulb outs discourage speeding by restricting turning speeds and narrowing the travel lanes. They facilitate pedestrian crossing by providing better

visibility between pedestrians and motorists, shortening the crossing distance, and reducing the amount of time that pedestrians are in the street.

Secondary TMTs

Change in pavement. Brick pavers in crosswalks and at other strategic locations break up the long views of black pavement. They also cue drivers that they are entering a different area.

Intensified landscaping. The verticalness of mature landscaping makes roadways appear narrower. When landscaping is intensified (eg., adding groundcovers to the roadway edge), the roadway appears to become narrower than before.

With the exception of the North End, which already experiences low traffic volume and speed, TMTs have been located in each segment of Estero Boulevard. Design solutions include only the locations of the TMTs. Determining the exact type of TMT to be used at specific locations will be accomplished following appropriate site analysis during the creation of detailed design development plans.

Cost Estimate for Traffic Management Techniques

> Primary Secondary

\$30,000 \$20,000

Trolley Stops

Trolley stops should be comfortable, safe, and inviting. For the purpose of this *Streetscape Master Plan*, conceptual designs for two primary trolley stops and one secondary trolley stop were created. Design solutions include only the locations of the trolley stops. Specific design details for trolley stops will be identified following appropriate site analysis and the creation of design development plans.

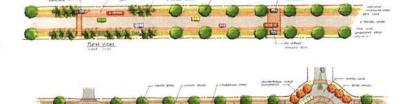
Primary trolley stops. Primary trolley stops include a shelter, benches, waste receptacles, bicycle racks, pedestrian lighting, and landscaping. One of the primary trolley stops includes a trolley pull-off area within the right-of-way. Primary trolley stops are located in commercial, civic, and high density areas.



Secondary trolley stops. Secondary trolley stops include a bench, waste receptacle, pedestrian lighting, and landscaping. These stops generally are

WilsonMiller

Cost Estimates for Trolley Stops


Primary with pull-off Primary without pull-off Secondary

\$61,250 \$44,260 \$12,350

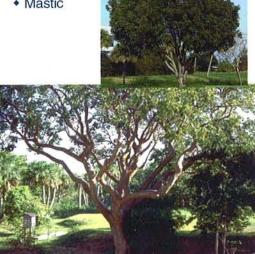
located in single family residential areas along Estero Boulevard. Benches may be placed underneath street trees to provide needed shade.

Landscaping

The alignment of street trees along the edge of Estero Boulevard establishes the landscape rhythm for each segment. Flowering trees may be used for color impact at the location of TMTs, trolley stops, and crosswalks. Intense ornamental planting should be limited.

Crosswalks

Everyone who participated in the development of this

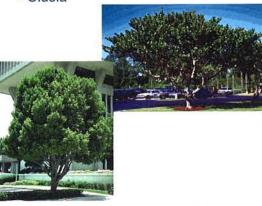

Streetscape Master Plan-residents, elected officials, Town staff, emergency services providers, and trolley service providers-agreed that the crosswalks on Estero Boulevard must be enhanced. The design solution uses brick pavers and pedestrian lights to visually enhance the crosswalks for each segment. The crossings at the beach access points are enhanced with additional brick pavers in the entire intersection. Other improvements may be found at specific crosswalks, such as the crosswalk pavement lighting (or "runway" lights), which were discussed during the charrette. The full details for each crossing will be developed during the creation of the design development plans. The appropriate location for each crosswalk is discussed in each segment.

Landscaping materials that require "no maintenance" do not exist. All trees, shrubs, and ground covers need some level of maintenance. Irrigation is required for proper maintenance.

The landscaping plant palette selected for Estero Boulevard includes:

Shade Trees

- Gumbo Limbo
- Mahogany
- Jamaican Dogwood
- Live Oak
- Lysiloma
- Mastic


Cost Estimates for Crosswalks

Typical Beach Access \$17,000 \$26,500

Medium Trees

- Seagrape
- Silver Buttonwood
- Pigeon Plum
- Clusia

Palm Trees

- Coconut Palm
- · Royal Palm
- Cabbage Palm
- Christmas Palm
- Thrinax Palm

Shrubs and Ground Covers

- Coontie
- Dwarf Fakahatchee
- Pink Muhly Grass
- Juniper
- Liriope
- Dwarf Bougainvillea
- Beach Creeper

The landscape rhythm and plant palette apply to all of Estero Boulevard; therefore, it is not discussed further in the following segments.

The location of specific plant material will be accomplished during the creation of a planting plan as part of the design development plan.

Lighting

Certain areas require different lighting. Intersections, trolley stops, and crosswalks require high levels of illumination; residential areas require low levels. It is recommended that street lights be 25-30 feet in height and spaced 175-200 feet apart. Pedestrian lights should be 12-15 feet in height and spaced 75-100 feet apart. In certain areas, the lights must be shielded away from the beach to comply with sea turtle protection laws. A specific type of light fixture is not recommended. This is best determined by the community during the design development phase.

As a result of the conclusions reached following a comparison of the analysis results of each alternative, the following design solutions for each segment are to be incorporated as part of the Streetscape Master Plan.

Geiger

• Hong

Kong

Orchid

Frangipani

Jacaranda

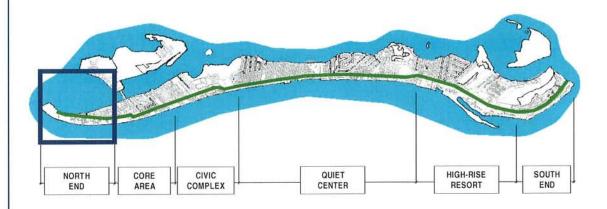
NORTH END

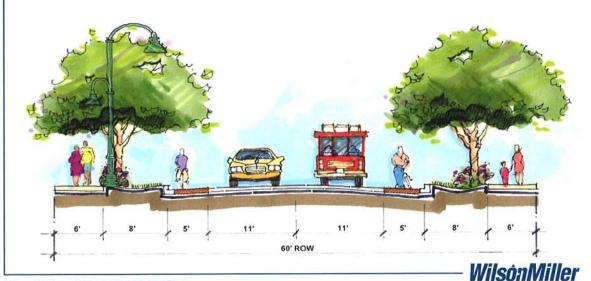
Based on the pros and cons and comparisons of each design option, the design solution for the North End is as follows.

Adopted Cross-section

Narrow 10-foot travel lanes keep speeds low. Bike lanes provide dedicated space for bicyclists, thereby decreasing conflicts between pedestrians and motorists. The edges are defined with landscaped areas between the travel lanes and sidewalk. The sidewalk width is adequate to provide space for shade trees, lighting, street furniture, and trolley stops.

The approved cross-section includes the following elements:

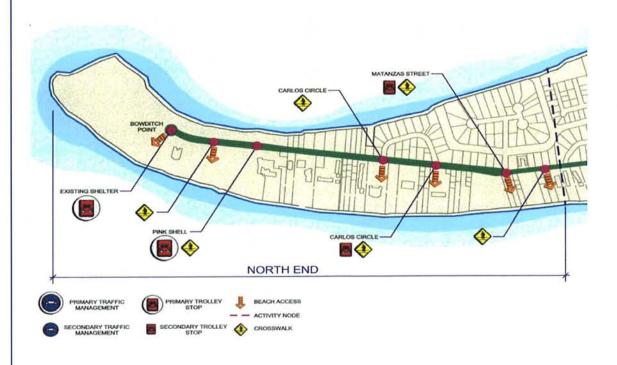

- 10-foot travel lanes
- 6-foot colorized bike lanes
- · 8-foot landscaped edges
- 6-foot sidewalks


Traffic Management Techniques

The low vehicle volume and speed, narrow travel lanes, and large street trees will help maintain the low speed environment in this segment. No further TMTs are recommended in the North End.

Trolley Stops and Crosswalks

Primary trolley stops are located at Bowditch Point (existing) and the Pink Shell. The other two trolley stops are secondary. Crosswalks are located at all six of the beach access points and at the four trolley stops.



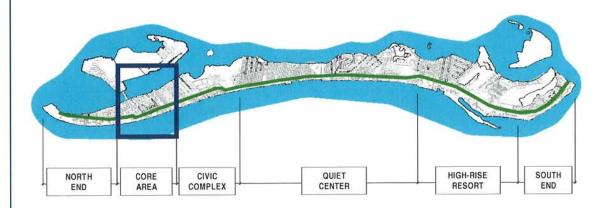
Estero Boulevard Streetscape Master Plan June 5, 2000 Section 3, Page 6

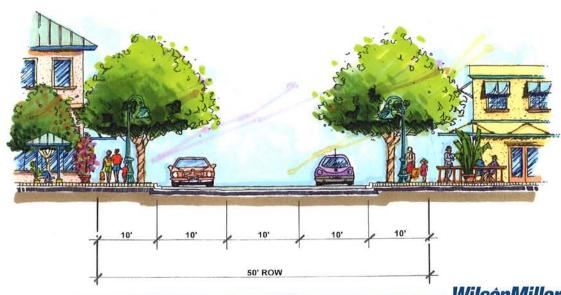
North End - Roadway Management

STATE OF THE STATE	US SET TO SET THE	NAME OF TAXABLE PARTY.
	Low	High
Roadway	\$891,000	\$1,850,000
Traffic Management	0	0
Trolley Stops	105,200	105,200
Crosswalks	98,000	98,000
Lighting	57,500	57,500
Landscape	92,400	92,400
Utilities	740,000	740,000
Total	\$1,984,100	\$2,943,100

CORE AREA

Based on the pros and cons and comparisons of each design option, the design solution for the Core Area is as follows.


Adopted Cross-section


Due to the traffic congestion and frequent driveway connections, it is necessary to maintain the center turn lane for turning and merging traffic, and emergency services access. It would be optimum to widen the sidewalks to a minimum of 12 feet, but the required center turn lane does not make this feasible. Therefore, the sidewalk width must be maintained at 10 feet. Due to the

limitations of the right-of-way, the need for the center turn lane, and the need to maintain the 10-foot sidewalks, this crosssection cannot accommodate bike lanes. Bicyclists will continue to ride through the area as they do today—on the sidewalks, sharing the travel lane with motorists, or through the alternate route of Crescent Street.

The approved cross-section includes the following elements:

- 10-foot travel lanes
- 10-foot center turn lane
- 10-foot sidewalks
- · Street trees in grates

Estero Boulevard Streetscape Master Plan June 5, 2000 Section 3, Page 8 WilsonMiller

Traffic Management Techniques

Enhanced traffic management is needed to control the movements of the high number of automobiles, pedestrians, and bicyclists. Four primary TMTs are located where Estero Boulevard intersects with San Carlos Boulevard, Fifth Avenue, Crescent Street, and Palermo Circle. The intent of TMTs in these locations is to enhance safety and better manage traffic, pedestrian, and bicycle circulation.

Trolley Stops and Crosswalks

Primary trolley stops are located at Lynn Hall Memorial Park, Times Square, Canal Street, and the Lani Kai. The trolley stop at Carolina Avenue is a secondary stop. Crosswalks are located in conjunction with TMTs, trolley stops, and beach access points as shown.

Core Area - Roadway Management

Cost Estimates for Center Street/Fifth Avenue Master Plan		
Base Cost:		
Infrastructure	\$359,900	\$359,900
Landscape	50,000	50,000
Add ons:		
Pavers		
Truck apron		5,000
Crosswalks		20,700
Sidewalk		99,100
Roadway		126,200
Larger shrubs & palms		150,000
Even larger shrubs & palms		300,000
Total	\$409,900	\$1,110,900

Gateway-Center Street/Fifth Avenue Master Plan

The Matanzas Pass gateway feature includes a roundabout at the intersection of Center Street and Fifth Avenue, an enhanced at-grade pedestrian crossing

located at the existing pedestrian signal, a landscaped median between the roundabout and pedestrian crossing, and additional landscaping on the edges.

		The state of the s
	Low	High
Roadway	\$1,020,000	\$1,920,000
Gateway	409,900	960,900
raffic Management (4/0)	120,000	120,000
rolley Stops (4/2)	201,750	201,750
Crosswalks (11)	199,400	199,400
ighting	114,500	114,500
andscaping	550,800	550,800
Utilities	800,000	800,000
Total	\$3,416,400	\$4,867,400

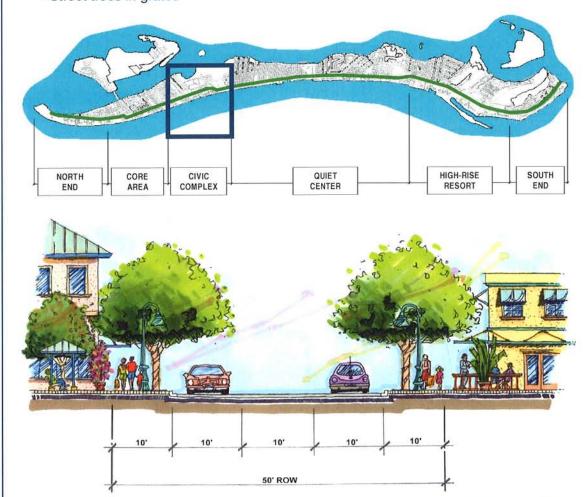
CIVIC COMPLEX

Based on the pros and cons and comparisons of each design option, the design solution for the Civic Complex is as follows.

Adopted Cross-section

The same congestion and limited rightof-way conditions as described in the Core Area continue through the Civic Complex. Therefore, the same crosssection will continue through the Civic Complex.

The approved cross-section consists of the following elements:


- 10-foot travel lanes
- 10-foot center turn lane
- 10-foot sidewalks with pavers
- · Street trees in grates

Traffic Management Techniques

TMTs are located at the edges of the activity node, reinforcing the slow moving pedestrian environment.

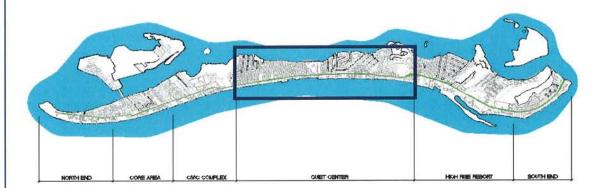
Trolley Stops and Crosswalks

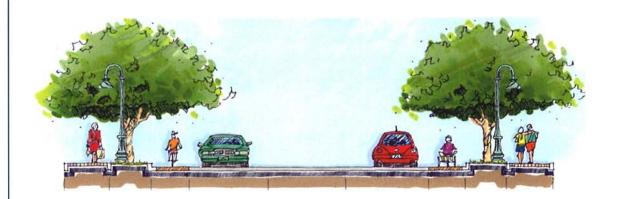
Primary trolley stops are located at Mango Street, Tropical Shoreway, Bay Road, and at the 7-11 just south of the fire station. Secondary trolley stops include Virginia Avenue, Gulf Beach Road, and the Red Coconut. Crosswalks are located in conjunction with TMTs, trolley stops, and beach access points as shown on the graphic.

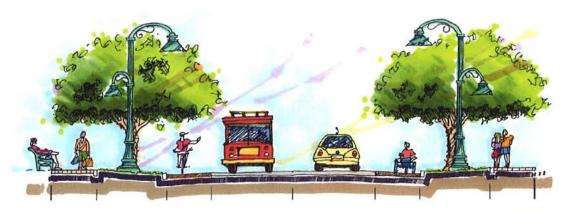
Civic Complex – Roadway Management

	Low	High
Roadway	\$1,244,000	\$2,100,000
Fraffic Management	80,000	80,000
Trolley Stops	201,800	201,800
Crosswalks	167,200	167,200
Lighting	65,000	65,000
Landscaping	270,200	270,200
Utilities	840,000	840,000
Total	\$2,868,200	\$3,724,200

QUIET CENTER


Based on the pros and cons and comparisons of each design option, the design solution for the Quiet Center is as follows.


Adopted Cross-section


Two cross-sections have been developed in this segment.

The first cross-section, where the center turn lane currently exists, includes the following elements:

- 10-foot travel lanes
- 10-foot center turn lane
- 5-foot colorized shoulders
- 6½-foot landscaped edges
- 6-foot sidewalks

The second cross-section includes the following elements:

- 11-foot travel lanes
- 6-foot colorized shoulders
- 9½-foot landscaped edges
- 6-foot sidewalks

Traffic Management Techniques

During the charrette, residents identified the area from the fire station to the San Carlos bridge as having the highest traffic speeds. These speeds do not foster a safe pedestrian environment along Estero Boulevard. As described earlier, TMTs are placed approximately every 400-600 feet to slow traffic speed. Therefore, TMTs in

the Quiet Center become more frequent; most are secondary. However, primary TMTs are located at Publix and at the "S" curve at the Church of Ascension, an area of high traffic accidents. Specific locations are shown on the graphic.

Trolley Stops and Crosswalks

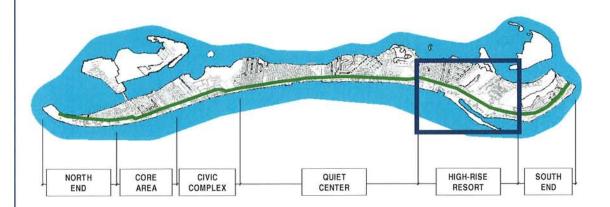
Primary trolley stops are located at Connecticut Street, Bayview Avenue, the Publix, Dakota Avenue, Aberdeen Avenue, and Mound Road. Secondary trolley stops are located at Madison Court, Hercules Drive, and Sterling Avenue. Crosswalks are located in conjunction with TMTs, trolley stops, and beach access points as shown on the graphic.

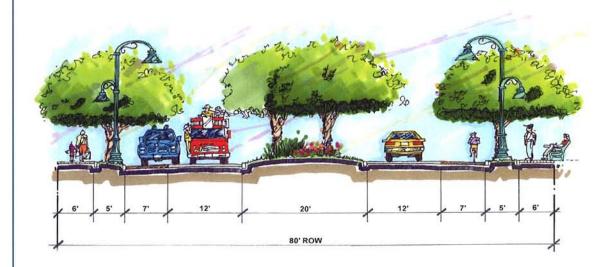
Quiet Center North – Roadway Management

Quiet Center South – Roadway Management

	Low	High
Roadway	\$2,330,000	\$5,675,000
Traffic Management (3/9)	270,000	270,000
Trolley Stops (6/4)	315,000	315,000
Crosswalks (17)	268,700	268,700
Lighting	204,000	204,000
Landscaping	191,100	191,100
Utilities	2,300,000	2,300,000
Total	\$5,878,800	\$9,223,800

HIGH RISE RESORT


Based on the pros and cons and comparisons of each design option, the design solution for the High Rise Resort is as follows.


Adopted Cross-section

The High Rise Resort segment of Estero Boulevard incorporates condominium driveway access points spaced approximately 150-300 feet apart. This spacing allows the special treatment and inclusion of wide landscaped medians with turning pockets in place of the existing center turn lane.

The cross-section includes the following elements:

- · 20-foot landscaped median
- 12-foot travel lanes
- 7-foot colorized shoulders
- 5-foot landscaped edges
- 6-foot sidewalks

Traffic Management Techniques

As higher traffic speeds occur in this area, TMTs spaced 400-600 feet apart continue from the Quiet Center into the High Rise Resort area. Primary techniques frame the two activity nodes, reminding motorists that they are in an intensified pedestrian area. Secondary techniques between the activity nodes help maintain slower speeds. The High Rise Roadway Management graphic identifies the specific locations of crosswalks.

Trolley Stops and Crosswalks

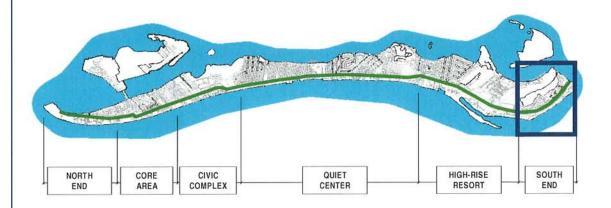
Primary trolley stops are located within the two activity nodes and one at Albatross Street. A secondary trolley stop is located at Bay Beach Lane. Crosswalks are located in conjunction with TMTs, trolley stops, and the beach access point as shown on the graphic.

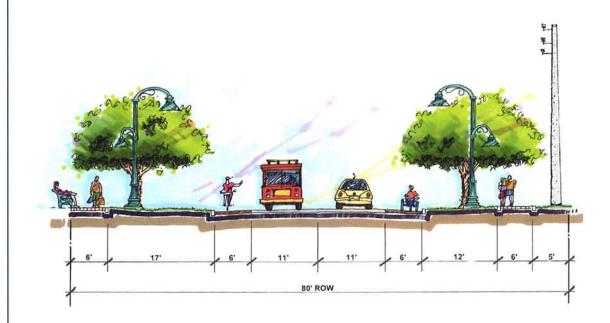
High Rise - Roadway Management

	Low	High
Roadway	\$2,720,000	\$3,450,000
Traffic Management	180,000	180,000
Trolley Stops	206,400	206,400
Crosswalks	242,600	242,600
Lighting	183,500	183,500
Landscaping	212,500	212,500
Utilities	1,400,000	1,400,000
Total	\$5,145,000	\$5,875,000

SOUTH END

Based on the pros and cons and comparisons of each design option, the design solution for the South End is as follows.


Adopted Cross-section


The same generous right-of-way continues from the High Rise Resort area into the South End. While it could accommodate similar attractive

landscaped medians, the single family residential driveway connections are so close together that medians would block left turning movements in and out of the driveways. Therefore, medians are not included in this segment.

The cross-section includes the following elements:

- 11-foot travel lanes
- · 6-foot colorized shoulders
- 17-foot landscaped edges
- 6-foot sidewalks

Traffic Management Techniques

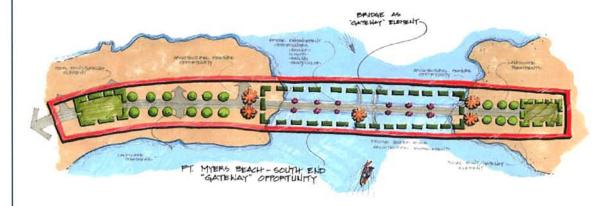
Primary TMTs are located at Lagoon Street, Tarpon Road, and Estrellita Drive. Secondary TMTs are located approximately every 400-600 feet apart as shown on the graphic.

Trolley Stops and Crosswalks

This is exclusively a residential segment with a lower rate of trolley ridership.

Therefore, all trolley stops are secondary, with the exception of one primary stop located at Estrellita Drive. As shown in the graphic, crosswalks are located in conjunction with the TMTs and trolley stops.

South End - Roadway Management



Gateway

The San Carlos bridge is the island's southernmost bridge. The conceptual gateway includes design features at the south end of the bridge, on the bridge itself, and on the north side of the bridge.

Gateway South End

	Low	High
Roadway	\$855,000	\$2,100,000
Gateway	163,000	355,250
Fraffic Management (3/4)	170,000	170,000
Trolley Stops (1/4)	93,700	93,700
Crosswalks (5)	97,500	97,500
_ighting	65,000	65,000
Landscaping	97,000	97,000
Utilities	840,000	840,000
Total	\$2,381,200	\$3,818,500

Implementation Strategies

The Streetscape Master Plan can be implemented successfully by using specific strategies.

Section 4—Implementation Strategies

IMPLEMENTING THE DESIGNS

Implementation of the Estero Boulevard Streetscape Master Plan requires a well-planned strategy—one that includes guidelines for setting priorities and a timeframe to implement phased improvements. The following strategies provide the structure under which the Streetscape Master Plan's design solutions can be implemented.

Transforming the current auto-oriented street into a pedestrian-friendly street is best accomplished through phased improvements. The Town Council must take certain steps to initiate the improvement process—to bring these design solutions off the paper and onto the street. It is recommended that the Town take the following steps to implement each phase of the improvements:

- Include Streetscape Master Plan Phase 1 in the Town's capital improvement budget
- Select a design development consultant for Phase 1 projects
- Accept public input on design specifications for Phase 1 projects
- 4. Have the design professional complete the design
- Adopt the final design and authorize receipt of bids
- Advertise, receive, review, and award bids
- 7. Construct Phase 1 projects
- 8. Repeat steps 1-7 for Phase 2, then Phase 3, etc.

IMPLEMENTATION STRATEGIES

In addition to the implementation steps outlined above, the following describes a number of additional implementation strategies that the Town should consider.

Hire a Project Coordinator

Significant changes to each segment of Estero Boulevard will come about as a result of continued collaboration among various stakeholder groups. However, the mechanics of implementing such an extensive project may prove challenging for the individuals involved in the process. Therefore, it is recommended that the Town hire a full-time project coordinator to help facilitate the overall process. In addition to being an effective communicator, the coordinator should be highly knowledgeable on transportation corridor development issues. A background in construction would be preferred.

Obtain Jurisdiction of Estero Boulevard

The North End is the only segment of Estero Boulevard currently under the Town's jurisdiction. Without jurisdiction over all seven miles of Estero Boulevard, the Florida DOT and/or Lee County will have to approve all roadway improvements. To make implementation as easy as possible, the Town should immediately begin the process of obtaining control of Estero Boulevard.

Initiate Discussion with the City of Bonita Springs

The South End gateway conceptual design includes gateway features on the south side of the bridge and on the bridge itself. The city limits of Bonita Springs extend 500 feet into San Carlos Pass, including that portion of the bridge. To implement the South End gateway, the Town should begin coordination efforts with the City of Bonita Springs immediately.

Establish a Tree Donation Program

Many communities benefit from citizens who generously donate trees to beautify the landscape. By establishing a tree

Section 4—Implementation Strategies

donation program, the Town will benefit from the available stock of mature trees that citizens are willing to donate. When compared to the costs of purchasing trees from a nursery, the Town's costs associated with removing a donated, mature tree from a resident's yard is minimal. This is a "win-win" situation: the Town can save thousands of dollars and the community can feel good about contributing toward the beautification effort.

Citizen Donations

Many citizens also are willing to make tax-deductible donations toward causes that they feel directly benefit them. With an established fund for donations, members of the community can make tax-deductible contributions toward implementing the Streetscape Master Plan.

Drainage, Survey, and Utilities Master Plan

Preparing a Drainage, Survey, and Utilities Master Plan will help the Town identify the extent of needed drainage improvements, any right-of-way encroachments, and areas where the utilities will be buried underground. This information is likely to affect the project phasing. For instance, a segment that needs only minor drainage improvements, has no right-of-way encroachments, and where it is unnecessary to bury utilities as part of the initial construction may be the easiest segment to implement. While these issues are currently unknown, they will be important to create the design development plans.

To keep momentum, the Streetscape Master Plan needs some "quick wins"—visible ones.

Coordination with Utilities

Representatives from TECO/Peoples Gas have indicated that the company will be installing a gas line on Estero Boulevard from the Matanzas Pass bridge to approximately the Red Coconut within the next year. Other utility providers should be contacted to identify replacement needs and timing. Replacing utility lines usually includes many of the same components as road reconstruction, such as pavement demolition, excavation, and roadway base reconstruction. The Town should coordinate with utility providers with the goal of simultaneously replacing utilities and reconstructing the street where possible. This will allow cost sharing of common elements. It also will keep utility companies from cutting into new pavement and disrupting the street to replace utilities after the project has been completed.

Ongoing Care

Part of the allure of a great street is a consistent level of care and maintenance and predictable operation of facilities. The recreated Estero Boulevard will prosper from a coordinated effort to promote the community and the street through advertising and staging special events that will draw the community together. Estero Boulevard will become the heart of the community and should be viewed as such. The Town will benefit from efforts to coordinate upkeep, promote its amenities, and to organize special events that celebrate Estero Boulevard. The Project Coordinator can develop an ongoing maintenance program consistent with the phasing schedule.

PHASING

Projects of this magnitude must be phased to manage costs and cash flow and to minimize disruption to traffic, adjacent residents, and businesses. A phasing schedule offers a flexible, staged strategy for implementing adopted improvements.

Section 4—Implementation Strategies

Implementation Criteria Table

Criteria	North End	Core Area	Civic Complex	Quiet Center	High Rise Resort	South End
Charrette participants' ranking	1	3	6	5	3	2
Ease of implementation	6	1	2	4		5
Within residential zone	3	1	4	5	6	2
No undergrounding utilities required	0	0	0	0	0	6
High visibility	1	6	5	3	2	4
Connectivity to existing improvements	5	6	4	0 0 4	0 0 6	0
Existing Town jurisdiction	6	0	0 2			0
Enhances bike safety	5	1				
Enhances pedestrian safety	1	3	5	4	6	2
Total	28	21	28	25	27	24

Delivering Results

It is very important to produce immediate results that the community stakeholders, the press, and others can see and enjoy. For example, a new section of sidewalk, new street lights, benches, trash receptacles, drinking fountains, and a freshly painted crosswalk are all visible, tangible elements that people can appreciate. A transportation plan, while crucial to the overall success of a road redesign, is a paper document that most of the public may never see or acknowledge. To keep momentum, the Estero Boulevard Streetscape Master Plan needs some "quick wins"-visible ones. Early achievements are real and create the sense that something is happening; that the Town is responsive and that the vision that the community helped create is becoming a reality.

To help the Town Council prioritize project phases, an **Implementation Criteria Table** (see above) has been prepared. A brief description of the criteria follows.

Charrette participants' ranking. At a workshop held during the charrette, participants voted for the segment that they would like to see constructed first.

Ease of implementation. Factors considered in developing the ranking included traffic volume per segment, ease of traffic maintenance, extent of improvements, and time to finish construction.

Within residential zone. The number of dwelling units per segment was obtained from the Lee County Property Appraiser's GIS Department.

No undergrounding utilities required. This applies to the South End

Reinventing Estero Boulevard requires multiple funding partners

Section 4—Implementation Strategies

segment only. If undergrounding utilities is not required simultaneously with the construction of improvements, it can be done at a later date.

High visibility. The ranking is based on traffic volumes per segment and the location of special features such as gateways and medians.

Connectivity to existing improvements. Times Square in the Core Area is the only area along Estero Boulevard that has significant streetscape improvements. The North End and Civic Core are the only segments that will provided any connectivity to the existing improvements.

Existing Town jurisdiction. At the time of publication of this report, the only segment in the jurisdiction of the Town of Fort Myers Beach is the North End.

Enhances bike safety. While the design solutions will enhance bike safety in every segment, some segments will have greater benefit than others. For instance, currently the High Rise Resort segment does not have paved shoulders, but the South End does. By adding paved shoulders to the High Rise Resort segment, bicyclists will have a greater benefit than in the South End.

Enhances pedestrian safety. While the design solutions will enhance pedestrian safety in every segment, some segments will have greater benefit than others. The segments that include the greatest number of traffic calming devices, medians, and improved crosswalks will have the greatest benefit.

At the Town Council's direction, the criteria in the Implementation Criteria

Table were weighted to determine the level of importance each has in the designated segments. The resulting segment ranking in the table reflects conditions as they exist today. The application of the implementation criteria is a dynamic process and should be used as a guide to prioritize projects. The table

should be updated as circumstances change and specific project milestones are accomplished; this likely will change the ranking.

Using the criteria and associated ranking as implementation guidelines, the following First Phase Action Plan is recommended:

Phase One

- Initiate obtaining control of Estero Boulevard
- Initiate discussion with City of Bonita Springs to coordinate South End gateway improvements
- · Establish a tree donation program
- Establish a fund for citizen donations
- Hire Project Coordinator
- Prepare a Drainage, Survey, and Utilities Master Plan
- Proceed with design and construction of North End improvements

ESTIMATED OPINION OF PROBABLE COST

Cost estimates for each individual segment are included in Section 3—Design Solutions. The table on the following page summarizes all of the costs and provides an overall estimated opinion of probable cost.

FUNDING THE VISION

Reinventing Estero Boulevard requires multiple funding partners to manage the project's various components. Access to most public funding sources can be enhanced by a willingness of private sector interests to invest in projects that benefit public and private constituencies. Businesses could "adopt" portions of the street and assume responsibility for routine maintenance and minor physical upgrades. Key property owners could provide an annual contribution to implement the project and maintain public areas.

Section 4—Implementation Strategies

	Low	High
Roadway	\$9,060,000	\$17,095,000
Gateway	572,900	1,316,200
Fraffic Management (3/4)	820,000	820,000
rolley Stops (1/4)	1,123,900	1,123,900
Crosswalks (5)	1,073,400	1,073,400
ighting ` `	689,500	689,500
andscaping	1,414,000	1,414,000
Utilities	7,000,000	7,000,000
Total	\$21,753,700	\$30,532,000

The future calls for action,
leadership, and
commitment—the
dreams will become reality
through your community
pride and dedication.

Potential Funding Sources

In evaluating the opportunity to fund future Estero Boulevard improvements, a number of options were identified, including local, state, federal, and private sources of revenues.

While grant funds may be available for certain aspects or individual components of the project, it is unlikely that the Town will find a single grant or revenue source option that funds an entire segment. More likely, funding will come from a combination of revenue sources that will help make the *Streetscape Master Plan* a reality. To that end, a number of viable funding strategies have been identified in the table at the end of this section.

Please note that once the project design is finalized, additional research will be

needed to verify that the *Streetscape Master Plan* will be eligible for certain grants.

THE FUTURE

The Estero Boulevard Streetscape Master Plan is a statement of the dreams, hopes, and aspirations of the citizens of the Town of Fort Myers Beach. It has been the WilsonMiller team's unique privilege to assist the Town in the process of visioning for the future, dreaming the dreams, and identifying possibilities. The future calls for action, leadership, and commitment—the dreams will become reality through your community pride and dedication. Thank you for letting the management and staff of WilsonMiller be part of your future.

Estero Boulevard Streetscape Project Potential Funding Sources State & Federal Funding Sources

FUNDING SOURCE	DESCRIPTION State & rederal runding Sources CONTA	CONTACT INFORMATION	APPLICIBILITY/NOTES
FDOT Work Program Funds (STP)	Federal and state highway funds for capacity and reconstruction improvements, both on and off the State system. Includes bridge funds.	Glen Ahlert Lee County MPO 941-656-7720	Competitive at the MPO level. Includes specific projects as well as allocation "box".
Transportation Enhancement Activities (TEA-21)	Provision of pedestrian and bicycle facilities; provision of safety and educational activities for pedestrians and bicycles; acquisition of scenic easements and scenic historical sites; scenic or historical highway programs; landscaping and other scenic beautification; control or removal of outdoor advertising; environmental mitigation to address highway runoff pollution.	Ron Gogoi, SWFRPC, (MPO) 941-656-7720	Projects go through MPO for prioritizing. May take up to 5 years to obtain funding based on location on priority list.
Surface Transportation Program (STP) - Transit	Provides states aid under a flexible block grant surface transportation program.	USDOT: 202-366-5004	Mass transit, bikeway, pedestrian and intermodal transportation projects.
Surface Transportation Program (STP) - Safety Funds	Federal funds specifically earmarked for highway safety improvements; may include sidewalks, bike lanes/paths, etc.	John Limbaugh FDOT-SWAO 941-338-2341 Headquarters: David A. Price USDOT 202-366-4652	Earmarked/prioritized through each county's Community Traffic Safety Team.
FDOT Work Program Funds (STP)	Federal and state highway funds for capacity and reconstruction improvements, both on and off the state system. Includes bridge funds.	Glen Ahlert Lee County MPO 941-656-7720	Competitive at the MPO level. Include specific (large) projects in the FDOT 5-Year Work Program as well as small projects from the annual allocation "box".
FDOT Highway System Streetscape Grant District Landscape Program	For use on state highways, limited to \$200,000, competitive within the district and at the MPO levels.	John Limbaugh FDOT - SWAO 941-338-2341	Annual application; competitive.
Florida Highway Beautification Council Grant Program	The Florida Highway Beautification Council through the FDOT provides funds for landscape beautification projects on Florida's roadways.	John Limbaugh FDOT - SWAO 941-338-2341	The funding requires a 50% local match.
Non-Urbanized Area Transit Formula Grants	Grants to state and local agencies for mass transportation capital and operation costs.	USDOT Patricia Levine 202-366-2053	Trolley & transit stop improvements.
Transit Capital Grants	Financing and acquisition, construction, reconstruction, and improvement of mass transit facilities and equipment.	USDOT Patricia Levine 202-366-2053	Trolley & transit stop improvements.
Toll Facilities Revolving Trust Fund (Loans)	Enhance financial feasibility of revenue-producing road projects undertaken by local governments.	Nick Collins FDOT 850-414-4469	In the event the bridge becomes a toll facility. May be used for stormwater management, advanced right-of-way purchases.
National Tree Trust	Provides financial assistance and/or trees and planting material to municipalities with the intent of increasing the number of trees planted, maintained, managed, protected and cultivated in communities and urban environments.	Community Tree Planting: Jackie Bentz; Partnership Enhancement Program: Cindy Zimar; National Tree Trust: Jennifer Hinrichs 800-846-8733	To assist with landscaping along Estero Boulevard and roundabouts.
National Urban and Community Forestry Grant Program	The funds are for projects that develop or enhance a community's ability to have a sustained, comprehensive tree care program.	Mike Humphrey 850-414-8602	The federal share shall be 50% reimbursable with matching 50% coming from local funds. No more than 20% of the funds may be used for tree planting.
Florida Small Cities Community Development Block Grant - Commercial Revitalization	The Department of Community Affairs provides grants to eligible jurisdictions to assist in revitalizing downtown areas. Eligible projects include rehabilitation of privately owned building facades, modifications to handicapped access, sidewalks, landscaping, streets, drainage and parks.	HUD 202-708-3587	
Community Development Block Grants - Section 108 Loan Guarantees	Helps Community Development Block Grant eligible communities undertake large community development projects by guaranteeing private market loans secured by the communities' future CDBG grants.	Local/Regional: Contact HUD Headquarters: Paul Webster 202-708-1871	
NEA Grants	To foster the creation and presentation of artwork, etc.	Nancy Hanks 202-682-5400	Potential to use art/sculptures in roundabouts.
_	Flood Mitigation Assistance program, to reduce or eliminate long-term risk of flood damage to homes and other structures.		Enhanced Island-wide stormwater management capabilities.
Environmental Education Grants	To support projects that design, demonstrate, or disseminate practices, methods, or techniques related to the teaching of environmental issues for students, teachers and the general public.	Madeline Strong or Jerrie Lindsey, FGFWFC 850-487-0123 USEPA: George Walker, Diane Berger or Sheri Jojokian 202-260-8619	May potentially apply to coastal development/sea turtle lighting and like.
Greenways and Trails (formerly Rails to Trails)	Funds specific planning projects, construction and public education efforts that stimulate or support greenways or trail initiatives.	Fred Ayer 850-488-3701	
Sustainable Development Challenge Grant Program	Provides grants to communities as a way of catalyzing community-based and regional projects designed to promote sustainable development, build partnerships, and leverage public and private investments to enhance environmental quality.	USEPA: 202-260-6812 Pamela A. Hurt 202-260-2441	Depends on environmental protection offered by project/possible applicability to stormwater runoff.
Watershed Protection and Flood Prevention Program			Flood protection construction; improved stormwater management (quality and quantity) prior to discharge into bay.
Resource Conservation and Development Program	Helps residents to work together and plan how they can actively solve environmental, economic, and social problems facing their communities. Can be used for land conservation, water management, community development and environmental enhancement.	NRCS: 202-720-2241	Must be designated as RC&D.
Coastal Zone Management Administration/Implementation Awards	Assists states in implementing and enhancing coastal zone management programs approved by Secretary of Commerce. Includes natural hazards management, public access improvements, assessment of impacts of coastal growth and development, and demonstration projects with potential to improve coastal zone management.	Dept of Commerce 301-713-3155 ext 195	Pedestrian and bicycle enhancements to beach access points.
Coastal Service Center Cooperative Agreements		Dept of Commerce 803-974-6200	
Water Quality Cooperative Agreements	Support the creation of unique and new approaches to meeting stormwater, combined sewer outflows, sludge and pretreatment requirements as well as enhancing state capabilities.	USEPA 202-260-9545	Improved storm water management (quality and quantity).
1999 Urban and Community Forestry	Includes Local Government Program Development, demonstration for site specific projects, nonprofit administration, information and education projects and urban forestry or arbonicultural training.	Division of Forestry 94 I-850-6724	Street tree improvements; enhanced "treescape" development along corridor.
Florida Main Street Program	The Division of Historical Resources under the Department of State provides seed money grant and technical assistance for eligible communities.		Encourages revitalization of traditional downtown commercial districts through a community-based comprehensive approach.
Florida Communities Trust Florida Recreation Development Assistance Program	Grant and loan assistance for acquisition of conservation and outdoor recreational lands needed to implement the local government comprehensive plans. Funds outdoor recreational projects (FRDAP).	Anne Peery 850-922-2207 Bureau of Design and Recreational	
Florida's Plant-A-Tree Trust Fund	The state share shall not exceed 50% reimbursable with matching 50% coming from local funds. Use of the funds are for projects involving native trees on rural acres or urban landscapes.		
	County & Municipal Funding Sources	rces	

FUNDING SOURCE	DESCRIPTION COUNTY & MUNICIPAL FUNDING Sources	CONTACT INFORMATION	APPLICIBILITY/NOTES	
General Revenues	Property tax revenues; sales tax revenues.			
Local Gas Taxes	Town share of Lee County gas tax revenues, including Local Option Gas Taxes.			
Utility Taxes & Franchise Fees	Flexible funding source.			
Special Taxing Districts	MSTUs & MSBUs, including street lighting districts; landscape/beautification districts.			
Private & Public/Private Initiatives	Community & developer contributions, donations, etc.			
Adopt an Improvement Program	Variety of techniques to cover the initial capital investment as well as ongoing maintenance.			
Bond Financing	General Obligation (GO) Bonds that require a referendum, and Revenue Bonds pledging identified sources of revenues (other than property taxes).			
Tax Increment Financing (TIF) through Infrastructure improvements fund a Community Redevelopment Agency resulting from the improvements.	Tax Increment Financing (TIF) through Infrastructure improvements funded through the use of increases in the tax base a Community Redevelopment Agency resulting from the improvements.			

Appendix

Town of Fort Myers Beach Comprehensive Plan Policies Guiding the Estero Boulevard Streetscape Master Plan

COMMUNITY DESIGN ELEMENT

Policy 1-A-1: Changes along Estero Boulevard should improve on the characteristics that make it a boulevard in character and not just in name, safe and interesting to walk along, impressive landscaping, and scaled to people rather than high-speed traffic.

Policy 1-A-2: The town should develop a sidewalk and streetscape plan for all of Estero Blvd that builds on the design theme of the 1997 improvements from Time Square and to the Lani Kai. The plan should recreate the historic "Avenue of Palms" concept by adding appropriate palm trees such as coconuts on both sides between the sidewalk and new curbs. This plan should also address related needs such as parking and trolley pull-offs, and should be sufficiently detailed to estimate costs and suggestion potential phases of construction. Priorities should include positive impacts on:

- i. stimulating revitalization consistent with the town's overall vision in the comprehensive plan;
- ii. completing pedestrian and bike path linkages from one end of the island to the other;
- iii. managing traffic flow;
- iv. improving pedestrian crossings; including push button (demand) lights; textured materials to emphasize crossings to drivers; and covered seating areas and other "oasis" amenities at trolley stops and beach accesses;
- v. lowering construction and maintenance costs from the original design;
- vi. correcting drainage problems;
- vii. coordinating with utility undergrounding; and
- viii. working within new and available sources of funds.

After completing that plan, the town shall establish a phased schedule of capital improvements to complete this network.

- Policy 1-B-1: Create Estero Blvd gateways or entry features at the south end near Big Carlos Pass and near the touchdown of the Matanzas Pass bridge.
- Policy 1-B-5: Develop a program for placing utilities underground that addresses both public and private sector development.
- Policy 1-B-6: Conduct regular and adequate street cleaning (sweeping or vacuuming) throughout the town. Evaluate effective methods to keep streets and drainage systems clean despite the abundance of blown sand and the absence of curbs.

Policy 3-D-3: Continue with sidewalk improvements:

- i. Standard sidewalk widths should be provided by the public sector and/or private developers in each development project as it is implemented. Consider a program for private sidewalk reservation through dedication or easement, particularly along Old San Carlos.
- ii. Use selected materials in public rights-of-way and private property improvements adjacent to sidewalks, such as in plazas or building setbacks.

Town of Fort Myers Beach Comprehensive Plan Policies Guiding the Estero Boulevard Streetscape Master Plan

the road; interesting vistas for drivers; and avoidance of overly wide travel lanes or intersections.

Policy 7-E-4: SIDEWALKS AND BIKEWAYS: The town shall work toward major expansion of sidewalks and bikeways. In addition to the next phase of Estero Boulevard sidewalks 9see Policy 7-E-1 above), the town shall support the following projects:

- Support Lee County's imminent plans to fill the gaps from Buccaneer to Estrellita Drive and from the Villa Santini Plaza to Bay Beach Lane using federal funds;
- ii. Initiate extensive improvements by 1999 to Old San Carlos and Crescent Street in conjunction with parking improvements.
- iii. Initiate engineering studies by 1999 for bikeways and additional sidewalks on the second side of Estero Blvd and improved pedestrian crossings, including consideration of a pedestrian overpass at Times Square.

Policy 7-G-4: ADDITIONAL BRIDGE CAPACTIY: Additional bridge capacity should not be directed to Times Square (except for potential restriping). New lanes to Old San Carlos or Crescent Street would also be undesirable, as most congestion is caused by conditions on Estero Boulevard south of Times Square. Previously proposed bridges from Winkler Road or Coconut Road are infeasible from environmental and financial standpoints and need not be considered further.

Policy 7-H-1: PEDESTRIAN OVERPASSES: Although pedestrian overpasses are often ignored by pedestrians, an overpass providing a panoramic view of the Gulf might be attractive enough to reduce at-grade crossings at Times Square without discouraging foot traffic in this highly congested area. Even without an overpass, the pedestrian-actuated stop light may be replaceable with a flashing caution light to minimize effects of the crossing on traffic flow.

Policy 7-H-3: LEFT-TURNS AT TIMES SQUARE: Northbound traffic headed for Lynn Hall Park now turns left just past Times Square. These turns could interfere with traffic flow on Estero Blvd; if so, alternatives using Crescent Street should be considered.

Policy 7-H-7: DELIVERY VEHICLES: To avoid interference with traffic and pedestrian flow, the town shall develop a strategy to limit commercial deliveries during peak traffic periods.

STORM DRAINAGE COMMENTARY

There is a desire among the residents of Estero Boulevard to find ways to improve the drainage along Estero Boulevard, install curb, and provide water quality treatment for the runoff so as to minimize the impact of the runoff on the Bay. The existing routing of runoff through the adjacent streets either by piping, swales or a combination provides different levels of water quality treatment. The streets such as Bay Mar probably provide the best treatment of runoff prior to discharge into the Bay. There is no pipe system except for the outfall, and there is a good flow length through a swallow swale system which provides water quality treatment, and an opportunity for infiltration. Other streets with pipe culverts and swales, or piping, pipe culverts and swales, provide the next best level of water quality treatment. The system with just underground pipe systems provide the least degree of water quality treatment.

The most efficient method for solving drainage problems is to install an underground drainage system, with a positive outfall. Either a direct outlet to the Bay or a canal would be the preferable location of the outfall. This type of system does not promote water quality treatment of the runoff. Several options exist to help provide water quality treatment in this type of system. One method is to provide a swale at the pipe outlet before the runoff discharges to the Bay. An example of this solution exists at the end of Carolina Street/ Ostego Circle. There is an outfall between two houses at the end of the streets, with vegetation, that provides some degree of water quality treatment prior to discharge to the Bay.

Water quality treatment could also be provided by installation of water quality inlets, oil/water separators, or some other type of inline treatment device. These devices tend to be high maintenance, but do provide a level of water quality treatment.

Another water quality treatment method would be to provide dry detention areas, where the first flush of runoff could discharge and infiltrate into the ground, or bleed down from the detention area at a slow rate. The major storm discharge would then be piped to an outfall point. These dry detention areas could be on property adjacent to the street, in landscape islands, or could be on property purchased for that purpose.

The installation of curb and gutter itself could create additional drainage problems. The normal curb height is six inches. Some of the areas adjacent to Estero Boulevard are very flat, and will require careful design of the curb and gutter to not cause ponding on private property adjacent to the roadway. Although a six inch curb will help with the separation of pedestrians from motor vehicles, the use of curb needs to be looked at carefully. The road can be designed with appropriate storm drain systems to eliminate or minimize storm drainage ponding on the road, but by raising the grade adjacent to the road even six inches, there is a potential to cause drainage problems on the private property adjacent to the road. A curb and gutter design with less curb height may be advisable, i.e. a three to four inch curb height.

The South Florida Water Management District (SFWMD) involvement in this project will be minimized if no additional impervious area is created as a result of the streetscape project. There involvement will include review of any piping systems installed to correct drainage problems. In areas where piping does not exist, the SFWMD will most likely require water quality treatment for those areas. Their thinking on this situation would be that some degree of water quality treatment is presently being provided with the indirect rout the runoff takes to reach the Bay. That water quality treatment is being removed by directly piping runoff to the Bay, and therefore the treatment needs to be replaced.

Installing underground pipe systems with direct discharge to an outfall, as noted above. is the most expedient way to rid yourself of a storm drainage problem. These solutions are usually expensive, require easements for outfalls, and provide minimal, if any, water quality benefits. Construction of these types of systems also require disruption to the roads and properties where the construction is required. Sometimes though less is more. The existing method which runoff takes to reach the Bay is failing in some areas. but some areas may actually not have any runoff problems. One approach to the drainage for Estero Boulevard between Alva and Flamingo would be to only provide piping systems where absolutely necessary to solve specific storm drainage problems. The remainder of Estero Boulevard would then be reviewed carefully to try to maintain the existing flow patterns for the runoff, thus providing the treatment that is available in the existing system. Water Quality for the systems that are piped, would then be provided by one of the three methods noted above, i.e. treatment at the outfall, dry detention or an inline treatment device. This solution would require some field engineering, but would be less disruptive to the residents involved in the project, and take advantage of existing functioning systems.

Storm drainage for the area south of Flamingo should be maintained in its current state. Some of the deeper roadside swales may need to be reworked to allow installation of sidewalk. Sidewalk should not be the flow conveyance for the swale as currently exists in some areas along Estero Boulevard. The system along Bay Mar should be mimicked along Estero Boulevard where driveways occur a close intervals. This shallow swale system with the driveway part of the swale system seems to work well and provides better water quality treatment, and should be used instead of deep ditches and driveway culverts.

Reduction of impervious area should also be embraced where ever possible. Some solutions to parking areas already exist along Estero Boulevard. Types of surface include open graded aggregate or stone, pavers which space between pavers to allow for infiltration, grass parking, grasscrete or similar products, and porous pavement. Porous pavement is not recommended for roadways, as the wearing properties of the pavement on heavily used areas is much less than normal pavement.

Infiltration or exfiltration systems may also be considered for some areas. SFWMD does not like these systems for this part of Florida, but may be persuaded to accept these systems on a limited basis, with good engineering justification.

In summary simple solutions to the storm drainage problems along Estero Boulevard should be explored. Providing underground storm piping for the entire project is the easiest engineered solution to storm drainage. Underground piping is an expensive and disruptive solution. The Town of Fort Myers Beach should be better served with a site specific solution to storm drainage, with an eye for innovative solutions that may be less costly and more sensitive to the area to be served by the system. Water quality treatment should be easier to provide with these types of systems individually tailored to the particular problems encountered.

STORM DRAIN COST IMPLICATIONS

The cost of the solutions noted above are as different as the solutions themselves. Cost of underground piping probably being the most expensive, with keeping the existing system in place as the least costly.

Underground piping would include pipe (average 36-inch reinforced concrete pipe), inlets(two to four per block), manholes (one to two per block), installation of the pipe and structures, piping to an appropriate outfall, and maintenance of traffic. Piping to an outfall involves pavement replacement on the side streets and restoration of any areas disturbed outside of the pavement on the side streets. Water quality treatment will also need to be included at the outfall or by providing inline treatment. All costs associated with pavement and curb and gutter construction along Estero Boulevard should be added to the costs of storm drainage that follow. Costs for this option are summarized as follows:

Pipe	\$70.00 per linear foot
Structures	\$50.00 per linear foot
Piping to Outfall	\$40.00 per linear foot
Maintenance of Traffic	\$80.00 per linear foot
Water Quality Treatment	\$80.00 per linear foot
Total	\$320.00 per linear foot

Notes:

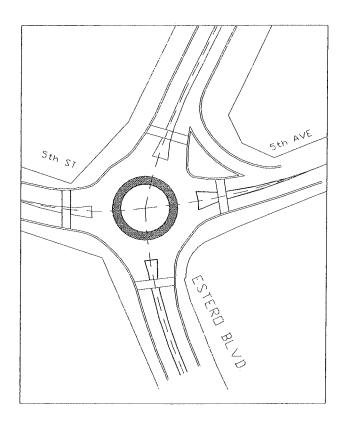
- 1. Piping based on 36-inch Reinforced Concrete Pipe at average depth.
- 2. Structures based on four inlets and 2 manholes per block.
- 3. Piping to outfall includes 800 linear feet of outfall piping per 15 blocks, and pavement

- replacement for the entire length of the outfall piping.
- Maintenance of traffic based on recent bid data from City of Fort Myers project. Unit cost for less than 2000 linear feet of roadway construction may be higher.
- Water quality treatment based on two inline treatment devices per block for water quality.
- 6. Costs do not include right-of-way acquisition.

Using the existing system with slight modifications can be done for less cost. Piping to enable the west side of the road to drain to the east would be required. This could be accomplished by providing inlets on the west side of the pavement, with piping under the pavement, and a ditch inlet to allow the storm water to flow out into the ditch. This system would include minimal piping (150 feet per intersection of 36 inch reinforced concrete pipe), and two inlet structures. Maintenance of these systems would be required to remove any sediment that accumulates in the pipe.

Costs for this option are summarized as follows:

Pipe	\$50.00 per linear foot
Structures	\$20.00 per linear foot
Maintenance of Traffic	\$40.00 per linear foot
Total	\$110.00 per linear foot


Notes:

- Piping based on 36-inch Reinforced Concrete Pipe at average depth (150 linear feet per block)
- 2. Structures assumes two inlets per block.
- 3. Maintenance of traffic based on minimal requirement for maintenance of traffic.
- 4. Costs do not include right-of-way acquisition.

Water quality treatment would be provided by the existing swales along the side streets. The level of treatment would be the same as provided in the existing condition. More piping may be required in selected areas where drainage problems are known or found in the analysis of the existing conditions possibly increasing the cost. Additional water quality treatment or some repair of the side street ditches may also be required for some streets, also potentially making the cost higher.

The costs noted above should be considered very approximate, but the simpler solution is considerably less costly. These two cost options show the range of solutions for storm drainage. The actual cost will most likely be between these two cost options. It would seem prudent for both water quality and economics to design a system closer to the second option.

Estero Boulevard Roundabout Design Report

A Gateway Roundabout

Intersection:

Estero Boulevard/5th Avenue/5th Street

Agency:

Town of Fort Myers Beach

Prepared by:

Michael Wallwork, P.E.

Date:

April 3, 2000

(
1.500
·
(
1
(
1946
ı
÷ - \$
· •
•
ŧ.
{
(
('
i
· index
The state of the s
4

ľ
(
(
ļ
Ć.
taggi
Ç

ESTORO BLVD/5TH AVENUE
PM PEAK new traffic flow based on new layout
Intersection ID:

Roundabout

Table S.15 - CAPACITY AND LEVEL OF SERVICE (HCM STYLE)

Mov No.	Mov Typ	Flow (veh	Cap. (veh		-	LOS
	West Ap		000	0.604	n 0	
بل کا	110	553	809	0.684	7.9	C
		553	809	0.684	7.9	C
		Approach		. = = = = = = = = = = = = = = = = = = =		
32 L'	rr	1009	1249	0.808*	4.6	В
		1009	1249	0.808	4.6	В
East:	East Ap	proach				
22 L'	_	-	315	0.146	13.5	С
23 R	(Con)	30	1900	0.016	0.0	A#
		76	2215	0.146	8.1	В
North:	North	Approach				
42 L			1573	0.626	0.9	В
		985	1573	0.626	0.9	В
ALL VI	EHICLES:	2623	5846	0.808	4.0	В
INTERS	SECTION:	2623	5846	0.808	4.0	В
						~

Level of Service calculations are based on average control delay including geometric delay (HCM criteria), independent of the current delay definition used. For the criteria, refer to the "Level of Service" topic in the SIDRA Output Guide or the Output section of the on-line help.

--- End of SIDRA Output ---

[#] Level Of Service for continuous movements based on density/concentration

^{*} Maximum v/c ratio, or critical green periods

ESTORO BLVD/5TH AVENUE PM PEAK new traffic flow based on new layout Intersection ID:

Roundabout

_ , ,	_						* * * * * * * * * * * * * * * * * * * *	O T TOO 10 T YOU	
Table	S	14	***	SUMMARY	OF.	INPUT	ANI)	OUTPUT	DAT'A

rabic	J. 1 1	5011									
Lane							Eff Grn (secs)			95% Oueue	
	L	Т	R	Tot		Satf.	1st 2nd	х	(sec)	(ft)	(ft)
West: 1 LTR	West 336			553	1			0.683	7.9	197	
	336	22.	195	553	1			0.683			
South	. 5011	th Ar									
1 LTR				1009	1			0.808	4.6	289	
	163	812	34	1009				0.808		289	
East:	East	Appr	oach								
1 LT				46	4			0.146	13.5	20	
2 R		0	30		3	1900		0.016	0.0		
	23			76				0.146	8.1	20	
North	· Nor	th Ar	nroac	'h							
1 LTR					1			0.626	0.9	129	
				985				0.626			
ALL V				Tot				Max			
MDD VI	3111 CLIS	U		Arv.				X			
				2623	1			0.808	-	289	
======	=====	====	=====	=====	====	======			======		====

Total flow period = 60 minutes. Peak flow period = 15 minutes.

Note: Basic Saturation Flows are not adjusted at roundabouts or sign-controlled intersections and apply only to continuous lanes.

Values printed in this table are back of queue.

Lan No.			Flow Thru	Rig	Tot	Width	Satura Adj. Basic (tcu)	Aver 1st	Aver 2nd	Min Cap (veh /h)	Cap (veh	Deg. Satn x	Lane Util %
West: 1 LTR	West 12			195	553	13.0N						0.683	100
South: 1 LTR	Sout 32		roach 812		1009	13.0N	_		-	60	1249	0.808	100
East: 1 LT 2 R		Appro 23 0		0 30	46 30	13.0N 13.0N	- -		-			0.146	100
North: 1 LTR	Nort 42	h App 20	roach 690	275	985	13.0N	-		_	60	1573	0.626	100

N Width value was not used for saturation flow adjustment in this case. (Lane width adjustment does not apply at sign-controlled intersections or to gap-acceptance capacities at signalised intersections).

Basic Saturation Flow in this table is adjusted for lane width, approach grade, parking manoeuvres and number of buses stopping. Saturation flow scale applies if specified.

ESTORO BLVD/5TH AVENUE

PM PEAK new traffic flow based on new layout Intersection ID:

Roundabout

Table S.12A - FUEL CONSUMPTION, EMISSIONS AND COST - TOTAL

		•				
Mov No.	Total		Total		Total	CO2 Lead Total Total kg/h kg/h
West: West App	roach					
12 LTR	18.8					178.1 0.00000
						178.1 0.00000
South: South A						
	33.7	253.62				318.5 0.00000
	33.7		0.391	15.08	0.610	318.5 0.00000
East: East App:						
22 LT	1.6	12.58	0.019	0.69	0.028	14.9 0.00000
23 R	0.9	6.84	0.010	0.37	0.016	14.9 0.00000 8.9 0.00000
	2.5	19.42	0.029	1.07	0.044	23.8 0.00000
North: North Ap						
	32.1	238.02				303.5 0.00000
						303.5 0.00000
INTERSECTION:	87.1	655.70	1.009	38.65	1.572	823.8 0.00000

Intersection ID: Roundabout

Table S.6 -	INTERSECTION	PERFORMANCE
-------------	--------------	-------------

	Total Delay (veh-h/h	Delay)(sec)	Queued	Rate	Index	Speed (mph)
West: 553	West Appr	oach			16.60	
South: 1009	South App		0.660	0.86	27.46	31.7
76	East Appro	8.1			2.06	
North:	North App	proach			22.45	
INTERSE 2623		4.0	0.573	0.82	68.58	31.8

ESTORO BLVD/5TH AVENUE

PM PEAK new traffic flow based on new layout

Intersection ID:

Roundabout

Table S.7 - LANE PERFORMANCE

	Arv Flow Flow (veh	(veh	Satn	-	Stop -		ack	Lane
	st Approach		0.683	7.9	1.04	7.8	197	
1 LTR	outh Approa	1249 (11.5	289	
East: Ea 1 LT	st Approach 22 46 23 30	1 315 (0.146	13.5	0.94	0.8	20	
	orth Approa 42 985).626	0.9	0.66	5.1	129	
# Conce	ntration/de	ensity	(pcse	per km,	or per	mile	if US	units)

ESTORO BLVD/5TH AVENUE

PM PEAK new traffic flow based on new layout

Intersection ID:

Roundabout

Table S.8 - LANE FLOW AND CAPACITY INFORMATION

* PMNEW *

East: Eas 22 LT 23 R	46 30	1311			1900	0.98	6107	100	0.016	
Jorth: No	orth App 985	proach 207	1.0	207	1573	0.85	36	100	0.626	
STORO BLV M PEAK n ntersecti	new traf on ID: Round	fic fl			ew layou	ıt			*	PMNEW
Degree Practic Total v	of satural span rehicle inters average back cance Ir uel (gasestion I	ration re Capa flow (capaci section ge move delay of queu- ndex a/h) 'h) sevel o	(highe city () veh/h) ty, all delay ment de (veh-h/e, 95%	est) lowest) llanes (s) elay (s /h) (ft)	(veh/h)		0.808 5 2623 5846 4.0 13.5 2.93 289 68.58 87.1 655.70 B			
STORO BLV M PEAK n ntersecti	ew traf		ow base	ed on ne	ew layou	t			*	PMNEW
able S.5	- MOVEM	IENT PEI	RFORMAN							
Mov No.	Delay	Delay	Queued	Eff. Stop	Longest 95% B	Queue ack	Perf. Index	Ave:	ed	
est: Wes 12 LTR	t Appro	ach . 7.9	0.73	1.04	7.8	197	16.60	30.3	3	
	uth App 1.29	roach 4.6	0.66	0.86	11.5	289	27.46	31.7	7	
st: Eas	t Appro	ach								
22 LT 23 R	0.00									

 ${\tt PM\ PEAK}\$ new traffic flow based on new layout Intersection ID:

Roundabout

Table R.5 - ROUNDABC	JT CAPACITY	δŁ	LEVEL	OF	SERVICE	-	SIDRA	&	HCM 1	MODELS
----------------------	-------------	----	-------	----	---------	---	-------	---	-------	--------

Mov	Arv		SID	RA			 CM 199'		·	HCM 1997 Upper			
	Flow (veh	Cap. (veh	Deg. Satn	Av. Delay	LOS	Cap. (veh /h)	Deg. Satn	Av. Delay (sec)	LOS	(veh	Deg. Satn x	Delay	LOS
West: West Approach 12 LTR 553 809 0.684 7.9 C 615 0.899 24.9 D 775 0.714 12.2										12.2	C		
											0.714		
South: 3				4.6	В	840	1.201	103.2	F	1030	0.980	21.9	С
		1249	0.808	4.6			1.201		F	1030	0.980	21.9	С
East:	46	315	0.146 NA	·	C 	422	0.109 NA	14.7 A				4	
			NA	<i>\</i>			NA	<i>f</i>			NA	<i>\</i>	-
North: 1		Approa 1573	ach 0.626	0.9	В	996	0.989	18.1	С	1178		4.4	
											0.836		В
ALL VEHIC											NA		

NA Values for this roundabout capacity model have not been calculated because the model was not applicable for the given roundabout conditions. Note that the HCM models are only applicable to single-lane roundabouts with circulating flows less than 1200 veh/h. Also note that results are not calculated for any of the models for slip lane or continuous movements. See SIDRA Output Guide Appendix Section A3.8 for roundabout limits.

ESTORO BLVD/5TH AVENUE
PM PEAK new traffic flow based on new layout
Intersection ID:
 Roundabout

Table	S	2	-	MOVEMENT	CAPACTTY	PARAMETERS

Mov No.	Arv Flow (veh /h)	Total Opng Flow (veh/h)	*HV	Adjust. Opng Flow (pcu/h)				Lane Util	Deg. Satn x
West:	West App R 553		1.0	731	809	0.85	24	100	0.684
South:	 South Aj R 1009	pproach	1.0	377	1249	0.85	5	100	0.808*

Table R.O - ROUNDABOUT BASIC PARAMETERS

>	_							_	
Width (ft)	Diam.	Circ. Lanes	Entry Lanes	/ Lane s Width (ft)	Flow (veh/ h)	%HV	Adjust. Flow (pcu/h)	%Exit Incl.	Cap. Constr. Effect
West Ap	proach 104	1	1	13.00	731	1.0	731	0	И
South	Approac 104	ch 1	1	13.00	377	1.0	377	0	N
East Ap	proach 104	1	1	13.00	1311	1.0	1311	0	N
	Approac	ch		13.00					N
	(ft) West Ap 20 South 20 East Ap 20	Width Diam. (ft) (ft) West Approach 20 104 South Approach 20 104 East Approach 20 104 North Approach	Width Diam. Circ. Lanes (ft) (ft) West Approach 20 104 1 South Approach 20 104 1 East Approach 20 104 1 North Approach	Width Diam. Circ. Entry Lanes Lanes (ft) (ft) West Approach 20 104 1 1 South Approach 20 104 1 1 East Approach 20 104 1 1 North Approach	Width Diam. Circ. Entry Lane Lanes Lanes Width (ft) (ft) (ft) West Approach 20 104 1 1 13.00 South Approach 20 104 1 1 13.00 East Approach 20 104 1 1 13.00 North Approach	Circ Insc No.of No.of Av.Ent Width Diam. Circ. Entry Lane Flow	Circ Insc No.of No.of Av.Ent	Circ Insc No.of No.of Av.Ent Width Diam. Circ. Entry Lane Flow %HV Adjust. Lanes Lanes Width (veh/ Flow (ft) (ft) h) (pcu/h) West Approach 20 104 1 1 13.00 731 1.0 731 South Approach 20 104 1 1 13.00 377 1.0 377 East Approach 20 104 1 1 13.00 1311 1.0 1311 North Approach	Width Diam. Circ. Lanes Entry Lane (veh/ (tt)) Flow (veh/ (pcu/h)) Adjust. %Exit Flow (pcu/h) (ft) (ft) (ft) (h) 731 1.0 731 0 West Approach 20 104 1 1 13.00 377 1.0 377 0 1.0 377 0 0 377 1.0 377 0 0 East Approach 20 104 1 1 13.00 1311 1.0 1311 0 1.0 1311 0 0 1.0 1311 0 0 North Approach 104 1 1 1 13.00 1311 1.0 1311 0 0

ESTORO BLVD/5TH AVENUE

PM PEAK new traffic flow based on new layout

Intersection ID:

Roundabout

Table R.1 - ROUNDABOUT GAP ACCEPTANCE PARAMETERS

Turn	Lane No.		Circ/ Exit Flow (pcu/h)		Prop. Bunched Vehicles		Follow Up Headway (s)
West:	Wes	t Approach					
Left	1	Dominant	731	2.00	0.638	3.00U	2.46
Thru	1	Dominant	731	2.00	0.638	3.00U	2.46
Right	1	Dominant	731	2.00	0.638	3.00U	2.46
South:	So	uth Approach					
Left	1	Dominant	377	2.00	0.407	3.00U	2.13
Thru	1	Dominant	377	2.00	0.407	3.00U	2.13
Right	1	Dominant	377	2.00	0.407	3.00U	2.13
East:	Eas	t Approach					
Left	1	Dominant	1311	2.00	0.838	3.00U	2.28
Thru	1	Dominant	1311	2.00	0.838	3.00U	2.28
Right	2	Continuous					
North:	No	rth Approach					
Left	1	Dominant	207	2.00	0.250	3.00U	1.95
Thru	1	Dominant	207	2.00	0.250	3.00U	1.95
Right	1	Dominant	207	2.00	0.250	3.00U	1.95
=							

U User specified critical gap or follow-up headway for an entry stream

^{*} Critical gap or follow-up headway set to MINIMUM value

ARRB Transport Research Ltd - SIDRA 5.20

Alternate Street Design, P.A.

Orange Park Registered User No. 0172

Time and Date of Analysis 11:27 AM, Mar 15,2000

ESTORO BLVD/5TH AVENUE

PM PEAK new traffic flow based on new layout Intersection ID:

SIDRA US Highway Capacity Manual (1997) Version Roundabout

RUN INFORMATION ------

* Basic Parameters:

Intersection Type: Roundabout

Driving on the right-hand side of the road

SIDRA US Highway Capacity Manual (1997) Version

Input data specified in US units

Default Values File No. 11

Peak flow period (for performance): 15 minutes

Unit time (for volumes): 60 minutes (Total Flow Period)

Delay definition: Stop Line delay

Geometric delay not included

Delay formula: Highway Capacity Manual

Level of Service based on: Delay (HCM)
Queue definition: Back of queue, 95th_Percentile

ESTORO BLVD/5TH AVENUE

PM PEAK new traffic flow based on new layout

Intersection ID:

Roundabout

* PMNEW *

* PMNEW *

Table S.O - TRAFFIC FLOW DATA (Flows in veh/hour as used by the program)

	Mov	Le	ft	Through		Right		Flow Scale	Peak Flow
	No.	LV	HV	LV	HV	LV	HV	Doare	Factor
West:	West Approac	 :h							
	12	333	3	21	1	193	2	1.00	0.90
South:	South Appro	ach							
	32	161	2	804	8	33	1	1.00	0.90
East:	East Approac	 h							
	22	22	1	22	1	0	0	1.00	0.90
	23	0	0	0	0	29	1	1.00	0.90
North:	North Appro	ach							
	42	19	1	683	7	272	3	1.00	0.90

Based on unit time = 60 minutes.

Flow Scale and Peak Hour Factor effects included in flow values.

ESTERO BLVD/5TH AVENUE

AM PEAK based on new traffic flows with new layout
Intersection ID:

Roundabout

Table S 15 - CAPACITY AND LEVEL OF SERVICE (HCM STYLE)

Table 9	S.15 - C	APACITY	AND LEV	EL OF SER	VICE (HO	CM STYLE
		Flow (veh	Cap. (veh	Deg. of Satn (v/c)	Delay	LOS
	West Ap TR	283		0.377		
			751	0:377	5.1	В
			ı 1581	0.493	0.8	В
				0.493		
22 L	Γ	13	560 1900	0.055	0.0	A#
			2460	0.055	4.8	В
			1681	0.553*	0.7	В
				0.553		
				0.553		
INTERS	SECTION:	2037	6472	0.553	1.5	В

Level of Service calculations are based on average control delay including geometric delay (HCM criteria), independent of the current delay definition used. For the criteria, refer to the "Level of Service" topic in the SIDRA Output Guide or the Output section of the on-line help.

--- End of SIDRA Output ---

[#] Level Of Service for continuous movements based on density/concentration

^{*} Maximum v/c ratio, or critical green periods

ESTERO BLVD/5TH AVENUE AM PEAK based on new traffic flows with new layout Intersection ID:

Roundabout

Table S.14 - SUMMARY OF INPUT AND OUTPUT DATA

Lane No.							Eff Grn (secs)				
	L	T	R	Tot		Satf.	1st 2nd	Х	(sec)	(ft)	(ft)
West: 1 LTR		15	125				_ ~				
	143	15	125	283	1			0.377	5.1	71	
South											
1 LTR					1			0.493	0.8	104	
	106	651	23	780	1			0.493			
East:	East	Appr	oach								
1 LT								0.055			
2 R											
	15	16	13	44	7			0.055	4.8	10	
North:											
1 LTR	9	623	298	930				0.553			
	9	623	298	930	1			0.553	0.7	131	
ALL VE			:====	Tot		======	======		Aver.		
				Arv.				X	_		
				2037					1.5	131	
							=========				

Total flow period = 60 minutes. Peak flow period = 15 minutes.

Note: Basic Saturation Flows are not adjusted at roundabouts or sign-controlled intersections and apply only to continuous lanes.

Values printed in this table are back of queue.

Lan No.	Mov No.		Flow			Lane Width				_	_	Deg. Satn	Lane Util	
	1.0.	Lef				(ft)	(tcu)	(veh)	(veh)	/h)	/h)		왕	
1 LTR	12		ach 15	125	283	13.0N	-	-	-	60	751	0.377	100	
South: 1 LTR	Sout 32	h App 106	roach 651	23	780	13.0N		_	_	60	1581	0.493	100	
East:		Appro												
1 LT	22	15	16	0	31	13.0N		_		31	560	0.055	100	
2 R	23	0	0	1.3	13	13.0N	-	-	-	13	1900	0.007	100	
North:	Nort	h App	roach											
1 LTR	42	9	623	298	930	13.0N	-	-	-	60	1681	0.553	100	

N Width value was not used for saturation flow adjustment in this case. (Lane width adjustment does not apply at sign-controlled intersections or to gap-acceptance capacities at signalised intersections).

Basic Saturation Flow in this table is adjusted for lane width, approach grade, parking manoeuvres and number of buses stopping. Saturation flow scale applies if specified.

ESTERO BLVD/5TH AVENUE

* AMNEW *

AM PEAK based on new traffic flows with new layout Intersection ID:

Roundabout

Table S.12A - FUEL CONSUMPTION, EMISSIONS AND COST - TOTAL

Mov No.	Total	Cost Total \$/h					
West: West App 12 LTR		71.04	0.109	4.16	0.169	88.8 (0.0000
	9.4	71.04	0.109	4.16	0.169	88.8 (0.00000
South: South A		190.58	0.295	11.22	0.460	242.0	0.00000
	25.6	190.58	0.295	11.22	0.460	242.0	0.00000
East: East App 22 LT 23 R	1.0	8.01 2.97					0.00000
	1.4	10.97	0.017	0.62	0.026	13.6	0.0000
North: North A 42 LTR		224.05	0.347	13.24	0.545	286.0 0	0.0000
	30.2	224.05	0.347	13.24	0.545	286.0 0	.00000
INTERSECTION:	66.7	496.64	0.767	29.25	1.201	630.4 0	.00000

Roundabout

Table S.6 - INTERSECTION PERFORMANCE

Flow	Total Delay (veh-h/h	Delay	Queued	Stop		
283		5.1			7.51	
	South App	proach			17.79	
44		4.8			1.11	
	North App	proach	•		21.08	
INTERSE 2037		1.5	0.417	0.66	47.49	32.8

ESTERO BLVD/5TH AVENUE

AM PEAK based on new traffic flows with new layout Intersection ID:

Roundabout

Table S.7 - LANE PERFORMANCE

		(veh	(veh	Satn	Aver. Delay (sec)	Stop -		ack	Lane
		pproach 283		0.377	5.1	0.83	2.8	71	ment appe came upon apply table
		Approa 780		0.493	0.8	0.65	4.1	104	* * * * * * * * * * * * * * * * * * * *
	22 23	31 13	560 1900	0.007	6.9 0.0		0.3#	10	
North:	North	Approa	ach		0.7			131	
# Cor	ncentra	tion/de	ensity	/ (pcse	per km,	or per	mile	if US	units)

ESTERO BLVD/5TH AVENUE

AM PEAK based on new traffic flows with new layout

Intersection ID:

Roundabout

Table S.8 - LANE FLOW AND CAPACITY INFORMATION

Saturation Flow Min Tot

* AMNEW *

* AMNEW *

23	LT R	13	900 0			560 1900	0.98	***	100	0.007	
North 42	: Nor LTR	th App 930	roach 135	1.0	135	1681	0.85	54	100	0.553*	
AM PE	O BLVD AK bas sectio	ed on	new tr	affic f	lows w	ith new	layout			*	AMNEW *
De Pr To To Av La To La Pe To	gree o actica tal ve erage rgest rgest rformatal futal cottersec	f satu l Spar hicle hicle inters averag hicle back o nce In el (ga st (\$/!	ration e Capa flow (capaci ection e move delay f queu dex /h) h) evel o	(highe city (l veh/h)	st) owest) lanes (s) lay (s h) (ft)	(veh/h)		0.553 54 2037 6472 1.5 6.9 0.83 131 47.49 66.7 496.64 B	Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
AM PE.	O BLVD AK base section	ed on 1	new tra	affic f	lows w	ith new	layout			*	AMNEW *
AM PE. Inter	AK baso section	ed on i n ID: Rounda	new tra	RFORMANG	CE	ith new					AMNEW *
AM PE. Inter Cable Mov No.	S.5	ed on in ID: Round: MOVEMI Total Delay	about ENT PEI Aver. Delay	RFORMANO Prop. Queued	CE Eff. Stop	Longest 95% B	 Queue ack	Perf. Index	Aver Spee	 c. ed	AMNEW *
Table Mov No. West:	S.5 - (ve. West LTR	MOVEMINATION TOTAL Approx 0.40	about ENT PER Aver. Delay)(sec) ach 5.1	Prop. Queued	Eff. Stop Rate	Longest 95% B (vehs)	Queue Queue ack (ft)	Perf. Index 7.51	Aver Spee (mph)	 c. ed	AMNEW *
Table Mov No. Mest: 12 South 32	S.5 - Vest LTR LTR	MOVEMMOVEMMOVEMMOVEMMOVEMMOVEMMOVEMMOVE	about ENT PER Aver. Delay (sec) ach 5.1 roach 0.8	Prop. Queued 0.70	Eff. Stop Rate	Longest 95% B (vehs) 2.8	 Queue ack (ft) 71	Perf. Index 7.51	Aver Spee (mph)		AMNEW *
Table Mov No. West: 12 South 32 East: 22	S.5 - West LTR Sout LTR East LT	MOVEMMOVEMMOVEMMOVEMMOVEMMOVEMMOVEMMOVE	about ENT PEI Aver. Delay (sec) ach 5.1 roach 0.8 ach 6.9	Prop. Queued 0.70 0.37	Eff. Stop Rate 0.83	Longest 95% B (vehs)	Queue ack (ft) 71 104	Perf. Index 7.51 17.79	Aver Spee (mph) 31.5		AMNEW *

ESTERO BLVD/5TH AVENUE

* AMNEW *

(pcse) per km or per mile if US units) for any lane

Table	RS	-	ROUNDABOUT	CAPACITY	Ş.	LEVEL	OF	SERVICE	_	SIDRA	ε.	HCM	MODELS
10010	1	,	TOOTING TOOL		u.	TTT A 1 TT	~ L				u.	11011	

Mana		en were some over were were -	SID	 RA					 r	Н(CM 1997	7 Uppe	 r
Mov No.	Arv Flow (veh /h)	Cap. (veh	Deg. Satn	Av. Delay	LOS	Cap. (veh	Satn	Av. Delay	LOS	(veh	Deg. Satn x	Delay	LOS
West:		751	0.377										В
											0.341		В
South: 3				0.8	В	1009	0.773			1217		1.3	В
		1581	0.493	0.8	В	1009	0.773				0.641	1.3	В
East: Ea	ast Ar	proach	1										
22 LT 23 R											0.047 NA		
											NA		
North: I	North	Approa	ach										
		1681	0.553	0.7	В	1035		5.3			0.747	1.4	В
ALL VEHIC	CLES:		-				NA				NA	\	

NA Values for this roundabout capacity model have not been calculated because the model was not applicable for the given roundabout conditions. Note that the HCM models are only applicable to single-lane roundabouts with circulating flows less than 1200 veh/h. Also note that results are not calculated for any of the models for slip lane or continuous movements. See SIDRA Output Guide Appendix Section A3.8 for roundabout limits.

* AMNEW *

ESTERO BLVD/5TH AVENUE AM PEAK based on new traffic flows with new layout Intersection ID:

Roundabout

Table S.2 - MOVEMENT CAPACITY PARAMETERS

Mov No.	Arv Flow (veh /h)	Total Opng Flow (veh/h)	%HV	Adjust. Opng Flow (pcu/h)	Cap.	Deg. Satn	Prac. Spare Cap. (%)	Lane Util	Deg. Satn
West: W	est App: 283		1.0	645	751	0.85	126	100	0.377
South: 32 LTR	South Ap	pproach 165	1.0	165	1581	0.85	72	100	0.493

Table R.O - ROUNDABOUT BASIC PARAMETERS

Circulating/Exiting Stream Cent Circ Insc No.of No.of Av.Ent											
Island Diam (ft)	Width (ft)	Diam.	Circ. Lanes	Entry Lanes	Lane Width (ft)	Flow (veh/ h)	%HV	Adjust. Flow (pcu/h)	%Exit Incl.	Cap. Constr. Effect	
West: 64	West Ap	proach 104	1	1	13.00	645	1.0	645	0	N	
South: 64		Approa 104	ch 1	1	13.00			165		N	
64	East Ap	104	1	1		900	1.0	900	0	N	
North: 64	North 20	Approac		1	13.00	135	1.0	135	0	N	

ESTERO BLVD/5TH AVENUE

AM PEAK based on new traffic flows with new layout Intersection ID:

Roundabout

Table R.1 - ROUNDABOUT GAP ACCEPTANCE PARAMETERS

Turn	Lane No.	Lane Type			Prop. Bunched Vehicles	Critical Gap (s)	Follow Up Headway (s)
West: Left	1	t Approach Dominant	645	2.00	0.592		2.50
Thru Right	1	Dominant Dominant	645 645	2.00	0.592		2.50
South: Left Thru Right	Soi 1 1 1	uth Approach Dominant Dominant Dominant	165 165 165	2.00 2.00 2.00	0.205 0.205 0.205		1.92 1.92 1.92
East: Left Thru Right	East 1 1 2	t Approach Dominant Dominant Continuous	900 900	2.00	0.713 0.713	4.17 · 4.17	2.44
North: Left Thru Right	No: 1 1	rth Approach Dominant Dominant Dominant	135 135 135	2.00 2.00 2.00	0.171 0.171 0.171	3.70 3.70 3.70	1.90 1.90 1.90

^{*} Critical gap or follow-up headway set to MINIMUM value

* AMNEW *

ARRB Transport Research Ltd - SIDRA 5.20 ______

Alternate Street Design, P.A.

Orange Park Registered User No. 0172

Time and Date of Analysis 11:29 AM, Mar 15,2000

ESTERO BLVD/5TH AVENUE

* AMNEW *

AM PEAK based on new traffic flows with new layout Intersection ID:

SIDRA US Highway Capacity Manual (1997) Version Roundabout

RUN INFORMATION ______

* Basic Parameters:

Intersection Type: Roundabout

Driving on the right-hand side of the road

SIDRA US Highway Capacity Manual (1997) Version

Input data specified in US units

Default Values File No. 11

Peak flow period (for performance): 15 minutes

Unit time (for volumes): 60 minutes (Total Flow Period)

Delay definition: Stop Line delay

Geometric delay not included

Delay formula: Highway Capacity Manual

Level of Service based on: Delay (HCM)

Queue definition: Back of queue, 95th Percentile

ESTERO BLVD/5TH AVENUE

AM PEAK based on new traffic flows with new layout Intersection ID:

Roundabout

* AMNEW *

Table S.O - TRAFFIC FLOW DATA (Flows in veh/hour as used by the program)

*	Mov No.	Le	ft	Thro	ugh	Rig	ht	Flow Scale	Peak Flow
	110.	ΓΛ	HV	LV	НV	ΓΛ	HV	beare	Factor
West:	West Approach	142	1	14	1	124	1	1.00	1.00
South:	South Approa	ch 105	1	644	7	22	1	1.00	1.00
East:	East Approach								
	22	14	1	15	1	0	0	1.00	1.00
	23	0	0	0	0	12	1	1.00	1.00
North:	North Approa	ch							
	42	8	1	617	6	295	3	1.00	1.00
Based	on unit time =	60 m	inutes					- 100 ago, 200 100 100 100 100	

Flow Scale and Peak Hour Factor effects included in flow values.

Estero Boulevard Roundabout Design Report

Introduction

At the request of the Wilson miller, Inc., Alternate Street Design prepared a capacity analysis and a geometric design for a roundabout at the intersection of Estero Boulevard and 5th Street.

The objectives of the design were to

- 1. Create an attractive gateway onto the island.
- 2. Provide all vehicle movements.
- 3. Slow vehicles as they enter the Downtown area.
- 4. Make it safer and easier for pedestrians to cross at this intersection.

Capacity Analysis

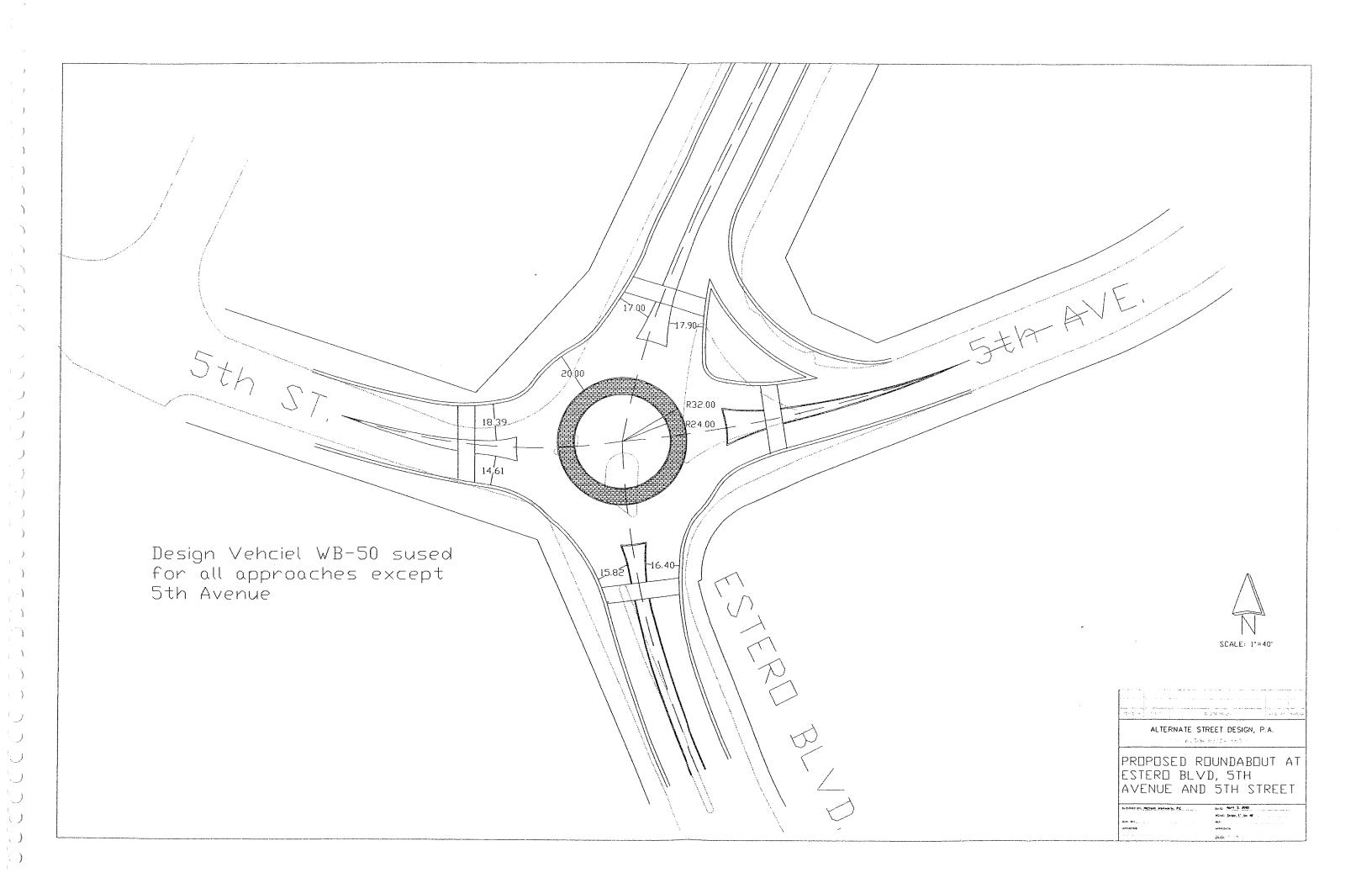
The traffic counts provided by the Wilson Miller, Inc., was used to undertake the capacity analysis. The analyses showed that a single lane roundabout would perform as follows.

	AM Peak Existing Traffic	PM Peak Existing Traffic	AM Peak 15% more Traffic	PM Peak 15% more Traffic
Level-of-service	В	В	В	В
Average Delay Seconds	1.5	4.0	2.1	15.8

Geometric

The geometric design of the roundabout is that of a single lane design that is the minimum required by the capacity analysis. The features of the roundabout design are as follows:

- 1. A large central, circular island provides a large space for landscaping, the placement of a feature that identifies that neighborhood, a gateway treatment, etc.
- 2. The large central island provides enough space for most large vehicles to make an U-turn with only a minimal use of the paved area around the central island.
- 3. Wide splitter islands are included to assist pedestrians as they cross either street by breaking their crossing into two separate crossings that are separated by a wide, safe refuge (splitter islands). When using the splitter islands to cross the road the additional benefit of the islands means that the pedestrians only have to look one-way and so cope


- with only one direction of traffic at a time.
- 4. The splitter islands can be enhanced with low level landscaping.
- 5. The design speed of the roundabout is 18 mph on all but the south approach where the design speed is 23 mph. At this speed the expectation is that most drivers will drive through the roundabout at less than 20 mph with only a few drivers exceeding 20 mph. Even these few "pretend racing car drivers" will be limited to only a few miles per hour only the design speed.
- 6. The continuation and interconnection of the sidewalks around the roundabout will help guide pedestrians to the correct crossing points and provide a continuous pathway around the roundabout.
- 7. A benefit is the reduced area of asphalt within the intersection. The reduced amount of asphalt will also reduce the amount of water run off that will occur.
- 8. The design vehicle that was used was a WB-50 on all legs except the east approach.
- 9. If a right turn lane on the north approach is considered necessary, then a right turn only lane could be added to the roundabout design to allow drivers to pull over and let a fire vehicle to pass. However, it would require some right-of-way to permit its inclusion. It would also reduce the convenience of the crossing for pedestrians.

Safety

There have been 16 mainly minor crashes at the existing intersection. Based on the performance of roundabouts in general a 60 percent of these crashes are possible.

Conclusion

A roundabout is an appropriate traffic control device for this intersection because it will permit drivers to make all movements, facilitate pedestrian movements, control vehicle speeds as they come down off the bridge, improve aesthetics, create a gateway into Fort Myers Beach, provide a safer intersection that will facilitate U-turns while reducing the area of asphalt.

ARRB Transport Research Ltd - SIDRA 5.20

Alternate Street Design, P.A.

Registered User No. 0172 Orange Park Time and Date of Analysis 11:31 AM, Mar 15,2000

ESTERO BLVD/5TH AVENUE

* AMNEW15 *

AM PEAK BASED ON NEW COUNTS AND 15 PERCENT INCREASE IN TRAFFIC Intersection ID:

SIDRA US Highway Capacity Manual (1997) Version Roundabout

RUN INFORMATION _____

* Basic Parameters:

Intersection Type: Roundabout

Driving on the right-hand side of the road

SIDRA US Highway Capacity Manual (1997) Version

Input data specified in US units

Default Values File No. 11

Peak flow period (for performance): 15 minutes

Unit time (for volumes): 60 minutes (Total Flow Period)

Delay definition: Stop Line delay

Geometric delay not included

Delay formula: Highway Capacity Manual

Level of Service based on: Delay (HCM) Queue definition: Back of queue, 95th_Percentile

ESTERO BLVD/5TH AVENUE

* AMNEW15 *

AM PEAK BASED ON NEW COUNTS AND 15 PERCENT INCREASE IN TRAFFIC Intersection ID:

Roundabout

Table S.O - TRAFFIC FLOW DATA (Flows in veh/hour as used by the program)

	Mov	Le	ft	Thro	ugh	Rig	ht	Flow Scale	Peak
	No.	LV	HV	ΓΛ	HV	LV		Scale	. Factor
West:	West Approach	163	2	16	1	142	1	1.15	1.00
South:	South Approa	ch 121	1	741	7	25	1	1.15	1.00
East:	East Approach 22 23	16 0	1 0	17 0	1 0	0	0 1	1.15 1.15	
North:	North Approa	ch 9	1	709	7	339	3	1.15	1.00

Based on unit time = 60 minutes.

Flow Scale and Peak Hour Factor effects included in flow values.

* AMNEW15 *

AM PEAK BASED ON NEW COUNTS AND 15 PERCENT INCREASE IN TRAFFIC Intersection ID:

Roundabout

Table R.O - ROUNDABOUT BASIC PARAMETERS

Cent	Circ	Insc	No.of	No.of	Av.Ent			ting/Exi	_	
Island Diam (ft)	Width (ft)	Diam.	Circ. Lanes	Entry Lanes	Lane Width (ft)	Flow (veh/ h)	%HV	Adjust. Flow	%Exit Incl.	Cap. Constr. Effect
West: 64	West Ap	proach 104	1	1	13.00	742	1.0		0	N
South:			1	1		190		190	0	N
64	East Ap	104		1		1035	1.0	1035	0	N
North: 64	North 20	Approad 104		1	13.00	155	1.0	155	0	N

ESTERO BLVD/5TH AVENUE

AM PEAK BASED ON NEW COUNTS AND 15 PERCENT INCREASE IN TRAFFIC Intersection ID:

Roundabout

Table R.1 - ROUNDABOUT GAP ACCEPTANCE PARAMETERS

Turn	Lane No.		Circ/ Exit Flow (pcu/h)	Bunch	Prop. Bunched Vehicles	Critical Gap (s)	Follow Up Headway (s)
West:	Wes	t Approach					
Left Thru Right	1 1 1	Dominant Dominant Dominant	742 742 742	2.00 2.00 2.00	0.643 0.643 0.643	4.36 4.36 4.36	2.48 2.48 2.48
South:	So	uth Approach					
Left Thru Right	1 1 1	Dominant Dominant Dominant	190 190 190	2.00 2.00 2.00	0.232 0.232 0.232	3.74 3.74 3.74	1.93 1.93 1.93
East: Left Thru Right	Eas ¹ 1 2	t Approach Dominant Dominant Continuous	1035 1035	2.00	0.762 0.762	3.98 3.98	2.39
North: Left Thru Right	No: 1 1	rth Approach Dominant Dominant Dominant	155 155 155	2.00 2.00 2.00	0.194 0.194 0.194	3.71 3.71 3.71	1.91 1.91 1.91

^{*} Critical gap or follow-up headway set to MINIMUM value

ESTERO BLVD/5TH AVENUE AM PEAK BASED ON NEW COUNTS AND 15 PERCENT INCREASE IN TRAFFIC Intersection ID:

Roundabout

Table R.5 - R	THORAGINIO	CAPACITY	ξ.	LEVEL	OF	SERVICE	_	SIDRA	&	HCM	MODELS
---------------	------------	----------	----	-------	----	---------	---	-------	---	-----	--------

			SIDF				CM 1997	7 Lowe	î	НС	CM 1997	Upper	r
Mov No.	Arv Flow (veh /h)	Cap.	Satn	Av. Delay (sec)	LOS	(veh /h)	Satn	Delay (sec)	LOS	(veh	Deg. Satn x	Av. Delay (sec)	LOS
West: West: Tr	est Ar 325	oproach 661	n 0.492						C	768	0.423	6.5	В
		661	0.492	7.7	В	628	0.518	8.5	C	768	0.423	6.5	В
South: 32 LTR	South 896	Approa	ach		В	988		8.1	В	1194	0.750	2.4	В
		1525	0.588	1.1	В	988	0.907	8.1	В	1194	0.750	2.4	В
East: E 22 LT 23 R	2 =	463	n 0.076 - ~ N7	9.1	C 	464	0.075 NA	11.0	C -	601	0.058	9.4	
			NZ	·			NA	A			NA	<i>A</i>	
North: 42 LTR	North	Appro	ach								0.871		
		1634	0.654	1.0	В	1017	1.050	35.6	D	1226	0.871	3.8	В
ALL VEHI	CLES		NA	<i>i</i> – –			~ - N	Δ			NA	<i>f</i> ~ -	

NA Values for this roundabout capacity model have not been calculated because the model was not applicable for the given roundabout conditions. Note that the HCM models are only applicable to single-lane roundabouts with circulating flows less than 1200 veh/h. Also note that results are not calculated for any of the models for slip lane or continuous movements. See SIDRA Output Guide Appendix Section A3.8 for roundabout limits.

ESTERO BLVD/5TH AVENUE AM PEAK BASED ON NEW COUNTS AND 15 PERCENT INCREASE IN TRAFFIC Intersection ID: * AMNEW15 *

Table	S.2	-	MOVEMENT	CAPACITY	PARAMETERS
-------	-----	---	----------	----------	------------

Roundabout

Mov No.	Arv Flow (veh /h)	Total Opng Flow (veh/h)	%HV	Adjust. Opng Flow (pcu/h)	Cap.	Deg. Satn	Prac. Spare Cap. (%)	Lane Util (%)	Deg. Satn
West:	West App	roach 742	1.0	742	661	0.85	73	100	0.492
South:	South A	pproach							

32 LTR	896	190	1.0	190	1525	0.85	45	100	0.588
East: Eas	st Appr	roach							
22 LT	35	1035	1.0	1035	463	0.85	1024	100	0.076
23 R	15	0			1900	0.98	***	100	0.008
North: No		-							
42 LTR	1068	155	1.0	155	1634	0.85	30	100	0.654*

ESTERO BLVD/5TH AVENUE

* AMNEW15 *

AM PEAK BASED ON NEW COUNTS AND 15 PERCENT INCREASE IN TRAFFIC Intersection ID:

Roundabout

Table S.3 - INTERSECTION PARAMETERS

_				
	Degree of saturation (highest)	===	0.654	
	Practical Spare Capacity (lowest)	===	30 %	
	Total vehicle flow (veh/h)	=	2339	
	Total vehicle capacity, all lanes (veh/h)	==	6183	
	Average intersection delay (s)	==	2.1	
	Largest average movement delay (s)	=	9.1	
	Total vehicle delay (veh-h/h)	=	1.36	
	Largest back of queue, 95% (ft)	==	181	
	Performance Index	==	56.29	
	Total fuel (ga/h)	=	76.8	
	Total cost (\$/h)	=	574.03	
	Intersection Level of Service	=	В	
	Worst movement Level of Service	***	C	

ESTERO BLVD/5TH AVENUE

* AMNEW15 *

AM PEAK BASED ON NEW COUNTS AND 15 PERCENT INCREASE IN TRAFFIC Intersection ID:

Roundabout

Table S.5 - MOVEMENT PERFORMANCE

		~							
No.	[(V	Delay eh-h/h)	Delay (sec)	Queued	Stop Rate	Longest 95% B (vehs)	ack (ft)	Index	Speed (mph)
West:	West	Approa	nch 7.7	0.77	0.95	4.4	112	9.46	30.5
32	LTR		oach	0.44	0.66	5.4	136	20.77	
East:	East LT	Approa	och 9.1	0.78	0.82	0.5 0.4#	13	1.01	35.1
42	LTR		1.0		0.63	7.2			

[#] Largest density/concentration (number of passenger car space equivalents (pcse) per km or per mile if US units) for any lane

AM PEAK BASED ON NEW COUNTS AND 15 PERCENT INCREASE IN TRAFFIC Intersection ID:

Roundabout

Table S.6 - INTERSECTION PERFORMAN	Table	S.6 -	INTERSECTION	PERFORMANCE
------------------------------------	-------	-------	--------------	-------------

Flow	Total Delay (veh-h/h	Delay				_
West: 325	West Appro	oach 7.7	0.775	0.95	9.46	30.5
	South Ap		0.444	0.66	20.77	32.7
	East Appr				1.31	
1068	North Ap	1.0			24.74	33.0
INTERSI					56.29	32.5

ESTERO BLVD/5TH AVENUE

AM PEAK BASED ON NEW COUNTS AND 15 PERCENT INCREASE IN TRAFFIC Intersection ID:

Roundabout

Table S.7 - LANE PERFORMANCE

Lane No.	No.	(veh /h)	(veh /h)	Satn x	(sec)	Eff. Stop - Rate (vehs)	ack (ft)	Lane
West:	West A	oproach	l						.
South:	South 32	Approa 896	ch 1525	0.588	1.1	0.66	5.4	136	
East: I 1 LT 2 R	22 23	35 15	463 1900	0.008			0.4#		
North: 1 LTR	North 42	Approa	ich 1634	0.653		0.63	7.2		

ESTERO BLVD/5TH AVENUE

AM PEAK BASED ON NEW COUNTS AND 15 PERCENT INCREASE IN TRAFFIC Intersection ID:

Roundabout

* AMNEW15 *

* AMNEW15 *

Lan No.	Mov No.					Lane Width (ft)	Adj. Basic	Aver 1st	2nd	Cap (veh	(veĥ		Lane Util %
	West 12	165	17			13.0N						0.492	100
South: 1 LTR	Sout 32	h App 122	proach 748	26	896	13.0N	-	-	-	60	1525	0.588	100
East: 1 LT 2 R	East 22		oach		35	13.0N 13.0N	-	-	-	35	463	0.076 0.008	100
North:	Nort 42		roach 716		1068	13.0N	-			60	1634	0.653	100

N Width value was not used for saturation flow adjustment in this case. (Lane width adjustment does not apply at sign-controlled intersections or to gap-acceptance capacities at signalised intersections).

Basic Saturation Flow in this table is adjusted for lane width, approach grade, parking manoeuvres and number of buses stopping. Saturation flow scale applies if specified.

* AMNEW15 *

ESTERO BLVD/5TH AVENUE

AM PEAK BASED ON NEW COUNTS AND 15 PERCENT INCREASE IN TRAFFIC Intersection ID:

Roundabout

Table S.12A - FUEL CONSUMPTION, EMISSIONS AND COST - TOTAL

Mov No.		Cost Total \$/h				Total	
West: West App	roach						
		83.79	0.128	4.86	0.197	103.4 0.	00000
	10.9	83.79	0.128	4.86	0.197	103.4 0.	00000
South: South A		219.48	0.339	12.95	0.530	278.3 0.	00000
	29.4	219.48		12.95	0.530	278.3 0.	00000
East: East App	roach						
	1.2	9.21 3.42				11.2 0.0	
	1.7	12.63	0.019	0.71	0.029	15.6 0.0	00000
North: North A	pproach						
-		258.12	0.400	15.30	0.629	329.0 0.0	00000
	34.8	258.12	0.400	15.30	0.629	329.0 0.0	00000
INTERSECTION:	76.8	574.03	0.886	33.83	1.385	726.3 0.0	00000

* AMNEW15 *

ESTERO BLVD/5TH AVENUE

AM PEAK BASED ON NEW COUNTS AND 15 PERCENT INCREASE IN TRAFFIC Intersection ID:

Roundabout

Table S.14 - SUMMARY OF INPUT AND OUTPUT DATA

14210											
Lane					%HV	Basic	Eff Grn (secs)	Sat	Aver. Delay	Oueue	Lane
	L	T	R	Tot		Satf.	1st 2nd	х	(sec)	(ft)	(ft)
West:		Appr	oach								
1 LTR	165	17	143	325	1			0.492	7.7	112	
	165	17	143	325	1			0.492			
South:	: Sou	th Ap	proac								
1 LTR	122	748	26	896	1			0.588	1.1	136	
	122	748	26	896	1			0.588			
East:			_								
1 LT				35		1000		0.076			
2 R	0	0	15	15	,	1900		0.008	0.0		
	17	18	15	50				0.076	6.4	13	
North	: Nor	th Ap	proac								
1 LTR	10	716	342	1068				0.653	1.0	181	
	10	716	342	1068	1			0.653		181	
ALL VI			=====	Tot		======	=======================================	Max			
					HV			X	_		
				2339	1			0.654			====

Total flow period = 60 minutes. Peak flow period = 15 minutes.

Note: Basic Saturation Flows are not adjusted at roundabouts or sign-controlled intersections and apply only to continuous lanes.

Values printed in this table are back of queue.

AM PEAK BASED ON NEW COUNTS AND 15 PERCENT INCREASE IN TRAFFIC Intersection ID:

Roundabout

Table S.15 - CAPACITY AND LEVEL OF SERVICE (HCM STYLE)

					•	
Mov No.		Flow (veh	Cap. (veh	Deg. of Satn (v/c)	Delay	LOS
	West App					
12 LT	TR	325	661	0.492	7.7	В
	-			0.492		
South:	South A					
32 LT				0.588	1.1	В
	-		1505			
				0.588		
East:	East App					
22 LI				0.076		
23 R	(Con)	15	1900	0.008	0.0	A#
			2363	0.076	6.4	В
North:	North A					
	'R	1068	1634	0.654*		В
		1068	1634	0.654	1.0	В
ALL VE				0.654		В
INTERS				0.654		

Level of Service calculations are based on average control delay including geometric delay (HCM criteria), independent of the current delay definition used. For the criteria, refer to the "Level of Service" topic in the SIDRA Output Guide or the Output section of the on-line help.

[#] Level Of Service for continuous movements based on density/concentration

^{*} Maximum v/c ratio, or critical green periods

⁻⁻⁻ End of SIDRA Output ---

Alternate Street Design, P.A.

Orange Park Registered User No. 0172

Time and Date of Analysis 11:25 AM, Mar 15,2000

ESTORO BLVD/5TH AVENUE

* PMNEW15 *

PM PEAK new traffic flow based on new layout with 15 percent more traffic Intersection ID:

SIDRA US Highway Capacity Manual (1997) Version Roundabout

RUN INFORMATION ______

* Basic Parameters:

Intersection Type: Roundabout

Driving on the right-hand side of the road

SIDRA US Highway Capacity Manual (1997) Version

Input data specified in US units

Default Values File No. 11

Peak flow period (for performance): 15 minutes

Unit time (for volumes): 60 minutes (Total Flow Period)

Delay definition: Stop Line delay

Geometric delay not included

Delay formula: Highway Capacity Manual

Level of Service based on: Delay (HCM)
Queue definition: Back of queue, 95th_Percentile

ESTORO BLVD/5TH AVENUE

. * PMNEW15 *

PM PEAK new traffic flow based on new layout with 15 percent more traffic Intersection ID:

Roundabout

Table S.O - TRAFFIC FLOW DATA (Flows in veh/hour as used by the program)

	Mov	Le	£t	Thro		Right		Flow Scale	Peak Flow
	No.	LV	HV	ΓΛ	HV	ΓΛ	HV	Scare	Factor
West:	West Approach	383	4	24	1	221	2	1.15	0.90
South:	South Approa	ch 185	2	925		38		1.15	0.90
East:	East Approach 22 23	25 0	1 0	25 0	1 0	0	0	1.15 1.15	
North:	North Approa 42	ch 22	1	786	8	312	3	1.15	0.90

Based on unit time = 60 minutes.

Flow Scale and Peak Hour Factor effects included in flow values.

ESTORO BLVD/5TH AVENUE

* PMNEW15 *

PM PEAK new traffic flow based on new layout with 15 percent more traffic

Table R.O - ROUNDABOUT BASIC PARAMETERS

Cent	Cira	Insc	No of	No of	h 17	Circulating/Exiting Stream						
Island Diam		Diam.	Circ. Lanes	Entry Lanes	Lane Width (ft)	Flow (veh/ h)	%HV	Adjust. Flow (pcu/h)	%Exit Incl.	Constr. Effect		
West:	West Ap											
	20							841		N		
South:	South	Approac	ch									
	20							433		N		
East:	East Ap	proach										
64 	20	104	1	1	13.00	1504	1.0	1504	0	Y		
North:	North	Approac										
64	20	104	1	1	13.00	237	1.0	237	0	Υ		

ESTORO BLVD/5TH AVENUE

PMNEW15 *

PM PEAK new traffic flow based on new layout with 15 percent more traffic Intersection ID:

Roundabout

Table R.1 - ROUNDABOUT GAP ACCEPTANCE PARAMETERS

Turn	Lane No.		Circ/ Exit Flow (pcu/h)	Bunch Headway (s)	Bunched Vehicles	(s)	Up Headway (s)
West: Left	Wes	t Approach Dominant	841	2.00	0.689	3.00U	2.45
Thru Right		Dominant Dominant	841 841	2.00	0.689 0.689		2.45 2.45
South:	So	uth Approach					
Left	1 ·	Dominant	433	2.00	0.452	3.00U	2.16
Thru		Dominant	433	2.00	0.452	3.00U	2.16
Right	1	Dominant	433	2.00	0.452	3.00U	2.16
East:	Eas	t Approach					
Left	1	Dominant	1504	2.00	0.876	3.00U	2.20
Thru	1	Dominant	1504	2.00	0.876	3.00U	2.20
Right	2	Continuous					
North:	No	rth Approach	· ·				
Left	1	Dominant	237	2.00	0.281	3.00U	1.97
Thru	1	Dominant	237	2.00	0.281	3.00U	1.97
Right	1	Dominant	237	2.00	0.281	3.00U	1.97

U User specified critical gap or follow-up headway for an entry stream

^{*} Critical gap or follow-up headway set to MINIMUM value

PM PEAK new traffic flow based on new layout with 15 percent more traffic Intersection ID:

Roundabout

Table R.5 -	ROUNDABOUT	CAPACITY	&	LEVEL	OF	SERVICE		SIDRA	&	HCM	MODELS	
-------------	------------	----------	---	-------	----	---------	--	-------	---	-----	--------	--

M	7						CM 199		r	HCM 1997 Upper			
Mov No.		Cap. (veh /h)	Satn x	Av. Delay (sec)	LOS	Cap. (veh /h)	Deg. Satn x	Av. Delay	LOS	(veh	Deg. Satn x	Delay	LOS
West:	est Ap	proacl	ı							709	0.896	27.6	D
											0.896		D
South: 8			1.003	24.8							1.178		F
		1156		24.8	D	811	1.430	204.3	F	985	1.178	93.4	F
East: Ea													
22 LT 23 R	52 34		NA	<i>j</i>			NA	4			NA NA	4	-
			NA	<i>y</i>			NA	<i>j</i>			NA	<u> </u>	
North: 1													
42 LTR	1132	1491	0.759	1.7	В	996	1.137	71.6	F	1175	0.963	12.6	С
		1491	0.759	1.7	В	996	1.137	71.6	F	1175	0.963	12.6	C
ALL VEHIC											NA		

NA Values for this roundabout capacity model have not been calculated because the model was not applicable for the given roundabout conditions. Note that the HCM models are only applicable to single-lane roundabouts with circulating flows less than 1200 veh/h. Also note that results are not calculated for any of the models for slip lane or continuous movements. See SIDRA Output Guide Appendix Section A3.8 for roundabout limits.

ESTORO BLVD/5TH AVENUE

* PMNEW15 *

PM PEAK new traffic flow based on new layout with 15 percent more traffic Intersection ID:

Roundabout

Table S.2 - MOVEMENT CAPACITY PARAMETERS

Mov No.	Arv Flow (veh /h)	Total Opng Flow (veh/h)	 %HV	Adjust. Opng Flow (pcu/h)	Cap.	Deg. Satn	Cap.	Lane Util	Deg. Satn
West: W	Vest App R 635		1.0	841	680	0.85	9	100	0.934
South:	South A		1.0	433	1156	0.85	-15	100	1.003*

100	0.333
100	0.018
100	0.759
- -	
	100

ESTORO BLVD/5TH AVENUE

* PMNEW15 *

 ${\tt PM}$ PEAK new traffic flow based on new layout with 15 percent more traffic Intersection ID:

Roundabout

Table S.3 - INTERSECTION PARAMETERS

Degree of saturation (highest)	==	1.003
Practical Spare Capacity (lowest)	===	-15 %
Total vehicle flow (veh/h)	==	3013
Total vehicle capacity, all lanes (veh/h)	=	5383
Average intersection delay (s)	=	15.8
Largest average movement delay (s)	==	24.8
Total vehicle delay (veh-h/h)	=	13.24
Largest back of queue, 95% (ft)	=	959
Performance Index	=	110.85
Total fuel (ga/h)	=	107.8
Total cost (\$/h)	===	854.81
Intersection Level of Service		С
Worst movement Level of Service	=	D

ESTORO BLVD/5TH AVENUE

* PMNEW15 *

 ${\tt PM}$ PEAK $% {\tt new}$ traffic flow based on new layout with 15 percent more traffic Intersection ID:

Roundabout

Table S.5 - MOVEMENT PERFORMANCE

Mov No.		Delay	Delay	Queued	Stop	Longest 95% B (vehs)	ack	Index	
West.	Wort	Approa	ah						
12	LTR	4.37	24.8			21.6			
		th Appr					 -		
				1.00	1.52	38.1	959	52.37	25.2
East:	East	Approa	ich						
22	LT		23.7	0.87	1.01	1.4 0.9#		1.98 0.69	
North:	Nort	th Appr	oach						
				0.51	0.69	8.1	204	27.00	32.8

[#] Largest density/concentration (number of passenger car space equivalents (pcse) per km or per mile if US units) for any lane

Table	S.6	_	INTERSECTION	PERFORMANCE
Table	D - 0		THIEROPCITON	E DUL OUMBING

Flow	Total Delay (veh-h/h)	Delay	Queued	Stop	Index	Speed
	West Appro		0.884	1.58	28.81	25.1
	South App 8.00		1.000	1.52	52.37	25.2
	East Appro		0.526	0.84	2.67	28.4
	North App 0.53		0.514	0.69	27.00	32.8
INTERSE 3013		15.8	0.779	1.20	110.85	27.7

ESTORO BLVD/5TH AVENUE

PM PEAK new traffic flow based on new layout with 15 percent more traffic Intersection ID:

Roundabout

Table S.7 - LANE PERFORMANCE

		(veh	(veh	Satn	Aver. Delay (sec)	Stop		ack	Lane
1 LTR	12		680		24.8				
South:	South	n Approa	ach	•	24.8				
1 LT	22		156		23.7			36	
		a Approa		0.759	1.7	0.69	8.1	204	
# Co	ncentra	ation/de	ensity	(pcse	per km	, or pe	r mile	if US	units)

ESTORO BLVD/5TH AVENUE

* PMNEW15 *

PM PEAK new traffic flow based on new layout with 15 percent more traffic Intersection ID:

Roundabout

Table S.8 - LANE FLOW AND CAPACITY INFORMATION

Lan No.			Flow			Lane Width	Satura Adj. Basic	Aver	Aver	Cap	Cap	Deg. Satn	Lane Util
		Lef	Thru	Rig	Tot	(ft)	(tcu)	(veh)	(veh)	/h)	/h)	х	%
West: 1 LTR	West 12	Appro		223	635	13.0N	-	-	_	60	680	0.934	100
South: 1 LTR	32	187				13.0N						1.003	100
East:	East	Appro	ach										
1 LT	22	26	26	0		13.0N				52	156	0.332	100
2 R	23	0	0	34	34	13.0N	-	-	-	34	1900	0.018	100
North:	Nort	.h App	roach										
1 LTR	42	23	794	315	1132	13.0N						0.759	100

N Width value was not used for saturation flow adjustment in this case. (Lane width adjustment does not apply at sign-controlled intersections or to gap-acceptance capacities at signalised intersections).

Basic Saturation Flow in this table is adjusted for lane width, approach grade, parking manoeuvres and number of buses stopping. Saturation flow scale applies if specified.

ESTORO BLVD/5TH AVENUE

* PMNEW15 *

Roundabout

Tab]	lе	S.12A	-	FUEL	CONSUMPTION,	EMISSIONS	AND	COST	~	TOTAL
------	----	-------	---	------	--------------	-----------	-----	------	---	-------

Total	Total	Total				al
roach						
23.7	195.91	0.289	10.79	0.420	224.5 0.000	00
23.7	195.91	0.289	10.79	0.420	224.5 0.000	00
pproach					•	
	360.95	0.541	20.76	0.792	417.4 0.000	00
44.1	360.95	0.541	20.76	0.792	417.4 0.000	00
roach						
	15.49	0.022	0.80	0.032	17.5 0.000	00
1.1	7.76	0.012	0.42	0.019	10.0 0.000	00
2.9	23.25	0.034	1.22	0.051	27.6 0.000	00
oproach						
	274.70	0.425	16.32	0.669	349.5 0.000	00
37.0	274.70	0.425	16.32	0.669	349.5 0.000	00
107.8	854.81	1.290	49.09	1.931	1018.9 0.000	00
	Total ga/h roach 23.7 23.7 pproach 44.1	Total Total ga/h \$/h roach 23.7 195.91 23.7 195.91 23.7 195.91 pproach 44.1 360.95 44.1 360.95 roach 1.9 15.49 1.1 7.76 2.9 23.25 pproach 37.0 274.70 37.0 274.70	Total Total Total ga/h \$/h kg/h roach 23.7 195.91 0.289 23.7 195.91 0.289 pproach 44.1 360.95 0.541 44.1 360.95 0.541 roach 1.9 15.49 0.022 1.1 7.76 0.012 2.9 23.25 0.034 pproach 37.0 274.70 0.425	Total Total Total Total ga/h \$/h kg/h kg/h kg/h roach 23.7 195.91 0.289 10.79 23.7 195.91 0.289 10.79 pproach 44.1 360.95 0.541 20.76 44.1 360.95 0.541 20.76 roach 1.9 15.49 0.022 0.80 1.1 7.76 0.012 0.42 2.9 23.25 0.034 1.22 pproach 37.0 274.70 0.425 16.32 37.0 274.70 0.425 16.32	Total Total Total Total Total Total ga/h \$/h kg/h kg/h kg/h kg/h roach 23.7 195.91 0.289 10.79 0.420 23.7 195.91 0.289 10.79 0.420 pproach 44.1 360.95 0.541 20.76 0.792 44.1 360.95 0.541 20.76 0.792 roach 1.9 15.49 0.022 0.80 0.032 1.1 7.76 0.012 0.42 0.019 2.9 23.25 0.034 1.22 0.051 pproach 37.0 274.70 0.425 16.32 0.669	Total Total Total Total Total Total Total Total ga/h \$/h kg/h kg/h kg/h kg/h kg/h kg/h kg/h kg

PM PEAK new traffic flow based on new layout with 15 percent more traffic Intersection ID:

ESTORO BLVD/5TH AVENUE

 $\mbox{\rm PM}$ PEAK $% \mbox{\rm new}$ traffic flow based on new layout with 15 percent more traffic Intersection ID:

Roundabout

Table S.14 - SUMMARY OF INPUT AND OUTPUT DATA

Lane No.							Eff Grn (secs)				
	L	Т	R	Tot		Satf.	1st 2nd	х	(sec)	(ft) (f	t)
West: 1 LTR	West			625	1			0.934	24 8	546	
I LIK	307		223	033							
	387	25	223	635				0.934			
South	: Sou	th Ar	nroac								
1 LTR					1			1.003	24.8	959	
	187	934	39	1160				1.003			
East:	East	Appr	coach								
1 LT	26	2.6	0	52	4			0.332	23.7	36	
2 R	0	0	34	34	3	1900		0.018	0.0		
	26	26	34	86	3			0.332	14.3	36	
North	· Nor	th Ar	proac	:h							
1 LTR		794	315	1132				0.759	1.7	204	
		794	315	1132	1			0.759	1.7	204	
	===== EHICLE			Tot		=====	=======	Max	Aver.	Max	
	CDD	J		Arv.				X			
					1			1.003	15.8	959	
======		====	=====	======	======	=====	========	======	======	========	===

Total flow period = 60 minutes. Peak flow period = 15 minutes.

Note: Basic Saturation Flows are not adjusted at roundabouts or sign-controlled intersections and apply only to continuous lanes.

Values printed in this table are back of queue.

Transaction Tool

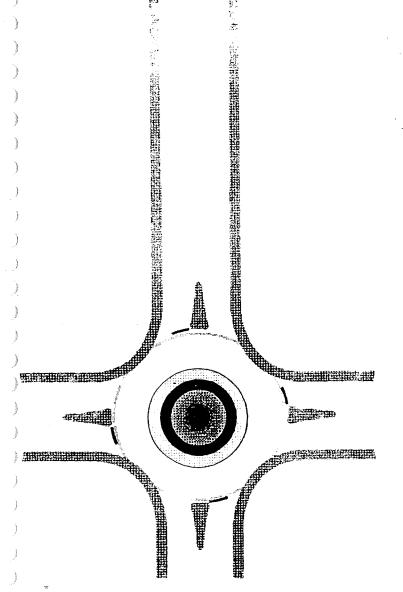
AND AND AND ADDRESS

The second second

Table S.15 - CAPACITY AND LEVEL OF SERVICE (HCM STYLE)

IdDIC :	,,,,,	CALACIII .	AND DEV.	EL OF DEN	ATCES (III	CM SIII
Mov No.			Cap. (veh		Delay	LOS
West:		pproach 635		0.934		
		635	680	0.934	24.8	D
	South	Approach 1160	1156		24.8	D
			1156	1.003	24.8	D
22 LT	East Ap	oproach 52 34	156 1900	0.333 0.018	23.7	D A#
		86	2056	0.333	14.3	C
	North	Approach 1132	1491	0.759	1.7	В
			1491	0.759	1.7	В
		3013				
		3013				

Level of Service calculations are based on average control delay including geometric delay (HCM criteria), independent of the current delay definition used. For the criteria, refer to the "Level of Service" topic in the SIDRA Output Guide or the Output section of the on-line help.


[#] Level Of Service for continuous movements based on density/concentration

^{*} Maximum v/c ratio, or critical green periods

⁻⁻⁻ End of SIDRA Output ---

ROUNDABOUT JUSTIFICATION STUDY

District / City FORT MYERS BEACH
Intersection ESTERO BLVD
at 5th AVE
Agency Town of FORT MYERS BEACH
Prepared by Alternak Street Design P.A.
Date $3 - 9 - 00$

Florida Department of Transportation

WWallwood

	ROUN	DABOUT JUSTIFICATION STUDY SUMI	MARY	40,000	Scare
Location Desc		TH AIL	Area Population	8,000	
ESIER	OBLVD/5	Ave	Growth Rate		
Existing Control:	▼ TWSC AWSC Signal	Total Approaches 3 4 5 6 7 8	Total crashes 16	in <u>3</u>	years
Other	Cognu	ADT (all approaches) 29, 352	Preventable /o		

	APPROACH CHARACTERISTICS								
Direction	Street Name	State or Local	Number of Lanes	ADT	Posted Speed	Traffic Control	Length*		
1. NB	Estero Blud	S	2	1,540	25	_			
2. SB	estero Blud	5	2	12,824	25		Imile		
3. EB	5th Ave	4	2.	4,765	25	Stop			
4. WB	5 th Ave	4	2	503	25		NA		
5.							,		
6.									
7.									
8.									

*from upstream signal.

JUSTIFICATION CATEGORY						
X Community enhanceme	ent AWSC alternative					
☐ Safety improvement	Traffic calming					
☐ Low volume signal alt	ernative Special					
☐ Medium volume signal alternative						
Warrants Met?	☐ Signal Volume warrants					
□ AWSC	☐ Signal accident warrants					
Level of Service	TWSC					
Signal	AWSC					
Traffic Volume Projection	on Basis: Actual voumes					
☐ Projected To	by					

ATTACHMENTS					
	24 Hour Approach Counts				
×	Peak hour turning movement counts				
×	Pedestrian / bicycle counts				
<u>×</u>	Existing Geometrics				
	Collision diagram/accident summary				
***************************************	Condition diagram				
<u>×</u>	Preliminary roundabout design				
×	Acrial Photograph.				

MISCELLANEOUS OBSERVATIONS

The following observations are relevant to the justification and/or operation of a roundabout: 1. Physical and right-of-way features 2. Current and planned site development features such as adjoining businesses, driveways, etc. Central Business District 3. Community considerations such as a need for parking, landscaping character, etc. GATEWAY 4. Traffic management strategies that are being (or will be) used in the area REDESIGN OF ESTERO BLYD TO A PEOPLE FRIENDLY DESIGN 5. Projected public transit useage (routes, stops, etc.) Existing Hansit is downstream of roundabout 6. Intersection treatments used at adjacent intersections Stop Control 7. History of public complaints that suggest a need for traffic calming Concern for pediotrians, congestion, speed control 8. Number of other roundabouts in the jurisdiction that would make drivers more familiar with this type of control 0

Other observations

SUMMARY OF VEHICLE MOVEMENTS

Location ESTERO BLVD / 5	HAVE
County LEE	City FORT AYERS BEACH
Observer Anthony Grudup Migel Downy	Date <u>/2/21/99</u>
Weather FINE	
Road Condition	
Remarks	THE ST NAME A
	O LTR O ST NAME ESTERO

VEHICLE MOVEMENTS												
TIME NORTHBOUND			SOUTHBOUND			EASTBOUND			WESTBOUND			
BEGIN	L	Т	R	L	T	R	L	T	R	L	T	R
AM Peak	106	651	22	8	623	,298	143	14	125	14	15	/2
11.15 to 12.15												<u> </u>
PM Peak	146	73/	30	17	621	247	303	19	175	20	20	26
4.30 105.30												
									<u> </u>			
									•			
	1-											
	1											
			<u> </u>									
	1											
	1				1		†		1	 		
		 				 	1			1		
	 	-		 	 	1						
· · · · · · · · · · · · · · · · · · ·	-				 	-						+
	-					 	-	-		-		

ANALYSIS OF CONTRAINDICATIONS

Describe all contraindications that apply at this location and indicate what mitigation measures will be used to eliminate the problems that could arise.

1. Physical or geometric features that could make the construction or operation of a roundabout more difficult

N/A

2. Land use or traffic generators that could interfere with construction or cause operational problems

N/A

3. Other traffic control devices along any intersecting roadway which would require preemption

N/A

4. Bottlenecks on any of the intersecting roadways that could back up traffic into the roundabout

M/A

5. Sight distance obstructions

N/A

6. Platooned arterial traffic flow on one or more approaches

NA

7. Heavy use by persons with special needs that could suggest a requirement for more positive control

None .

8. Recent safety projects in the area to benefit older drivers

N/A

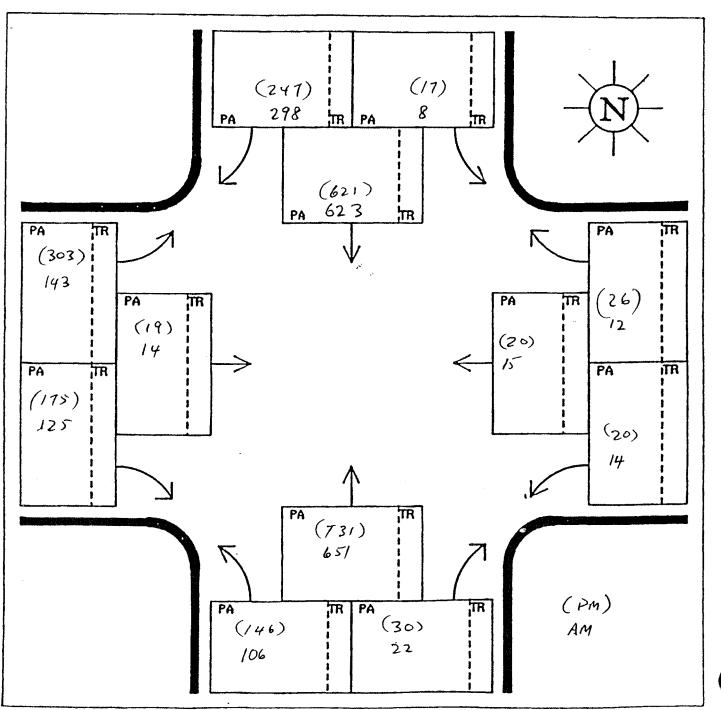
9. Emergency vehicle operations coordination requirements

(oordinate design with Fire Phief/EMS

10. Emergency evacuation route coordination requirements

Yes

11. Other problems that have been identified


VEHICLE MOVEMENTS DATA FORM

COUNTY LEE CITY Fort Myers Beach

DATE 12-17-99 TIME: FROM 4:30 pm TO 5:30 pm PM Peak

OBSERVER A. CIUDO M. Demy WEATHER FINE

REMARKS

FLORIDA DEPARTMENT OF TRANSPORTATION COLLISION DIAGRAM

COUNTY	D. ESTERO BLUD LEE H 1997 TO DEC	CITY	Er MyENC TOSA	EHLY				
STH ST. BICHUS BICHU								
	COLLISION SYMBO	DLS	CONDITIO	N CODES				
VEHICLE F WHITE F WHIT F WHITE	VEHICLE VEH COURT IN PATH IN PATH IN COURT IN CO	PAVEMENT CONDITION: CHORY WEWET INICY WEATHER CONDITION CHOLEAR REFAIN FEFOG SESNOW LIGHT CONDITION LEDAYLIGHT NEWIGHT (DARK) TIME OF DAT CMILITARY)						
	Δ	CCIDENT SUMMAR	RY					
	PROP. DMG ONLY	INJURY	FATAL	TOTAL				
DAYTIME				, , , , , ,				
NIGHTTIME								
TOTAL								

FLORIDA DEPARTMENT OF TRANSPORTATION COLLISION DIAGRAM

LOCATION I.D. ESTERO BLUD (SR 865) @ 5TH AVE COUNTY LEE CITY FT. MYERS REACH PERIOD JAN 1998 TO DEC 1998 PREPARED BY ARHOLD KENLY
57H ST.
COLLISION SYMBOLS CONDITION CODES VEHICLE PATH STEP GEACLEND COLLISION PAYERSTATIONS PAYERSTATIONS CONDITION CODES
VEHICLE PATH WENTER VEHICLE MON-INVOLVED VEH PEDESTRIAN PATH O PIXED OBJECT PARKED VEHICLE O PERSONAL INJURY O PERSONAL
ACCIDENT SUMMARY
PROP. DMG ONLY INJURY FATAL TOTAL DAYTIME TOTAL
VIGHTIME
TOTAL

FLORIDA DEPARTMENT OF TRANSPORTATION COLLISION DIAGRAM

LOCATION I.D. ESTER COUNTY LEE PERIOD JAN 1999		CITY _	T. YINDUS ISEACI	H
7/3/99 STH STI GUARDRA	73	3/21/91 4 6/23/	Ave Sur Ave	3
		' 11		
	ON SYMBOL		CONDITION	
VEHICLE PATH A	SIDE OUT O		PAVELENT CONDITION CHECKER CONDITION CHECKER REPAIN LIGHT CONDITION LEDAYLIGHT TIME OF DAT (MILL)	PEFOG SESNOV
		CIDENT SUMMAR	V	
PROP. I	DMG ONLY	YAULNI	FATAL	TOTAL
DAYTIME				
NIGHTTIME				
TOTAL	÷			

	FLORIDA DEPARTMENT OF TRANSPORTATION ACCIDENT SUMMARY													
SECTION STATE ROUTE 865 INTERSECTING ROUTE M.P. ENGINEER ARMOND KENLY STUDY PERIOD: FROM 1997 TO 1999 COUNTY LEE									n Kenuy					
NO.	DATE	DAY	TIME	TYPE	FAT	AL	טעאו	RY		PERTY	DAY/ NT	WET/ DAY	C	ONTRIBUTING CAUSE
	9/21/9	7	12:05pm	BIXE/CAN	14	0	YE	5	# 10	0	DAM	DRY	6	arelessness
2	4/1/4		10:15pm	REAR	Н	٥	No	>	来6	00	HT	ony	T	MAFFIC
3	3/5/9	1	9:49 Am	~ REAR	H	0	H	2	44,		DAT	ony	1	MAFFIC
4	1/4/9	7	2:40%	SIPE	M	6	H	2	# 8		Om	ong		TRAFFIC
5	12/27/9		4:00pm	- NEAVE	H	0	N	0	# 1,0	000	DAY	one		TYLANGIZ
6	4/12/9	e	5:00pm	REAM	N	0	N	٥	本1,1	66	DAY	Dry	<u>_</u>	TRAFFIC
7	3/20/9	3	7:300-	REAR	N	0	H	٥	# 55		NT	Dry		TRAFFIC
8	3/7/99	3	11:30pm	nemi	M	0	N	0	# 5		MT	one		TRAPPIC
9	8/14/90		2:30Am	ANGLE	N	0	N	٥	\$ 20		MT	one	_	DUI
10	8/21/99		9:15pm	REAR	N.	0	H	2	£ 50		HT	Day	_	TRAFIC!
11	6/25/90		3:15pm	NEAR	H	٥	H	٥	# 30		DA	ony		THATFIL
12	7/4/9	1	B: Sopa-	Angle	K	0	H	<u>8</u>	te 8		NI	DRy	7	elp Row,
13	7/3/9	Í	8:00pm	5108	H	0	H		#7		MI	Dry	-	arecessness
14	6/19/9	_	10:3000	REAR	H	٥	YE		# 15		M	my		Truffic
15	3/19/11		5150pm		H		H			00	DAY	any	 	TRAFFIC
16	1/5/99		31.15pm	REAR	7	0	N ₀	7	# 2	00	OB~	ony	6	ANELESSHES.
								•				<u> </u>	_	
TOTA	L NO.	FATAL	אטעאו	Y P.1	D.	AN	GLE	L.	ใบสม	FL TU	AN	REAREN	ס	SIDE SWIPE
	6	O	2			1	2					2		11
У	-													
VEHI ON		PED/ BIKE	DAY	NIG	нт	W	ET	[DRY	EXCE SPEI		FTY RW		DUI
I (A	1668)	1	8	, (8		0		16	Ċ	>			V
TOTAL	VEHICL	ES ENTE	RING/AD	T: 29	,000	> As	OT	AC	a deni	RATE:		5/48	Ar	

SUMMARY OF PEDESTRIAN MOVEMENTS

LOCATION COUNTY_ OBSERVE		BLVD / 5 K CITY	AVE FORT MYERS DATE 12	BEACH -17-99					
		RC N/	EDIAN WIDTH: 24 <4 EMARKS	v_24'					
PEDESTRIAN MOVEMENTS									
TIME	NORTH	SOUTH	EAST	WEST					
4. to 5 PM	3	40	0	34					
8 to 9 AM		2	0	7					

FLORIDA DEPARTMENT OF TRANSPORTATION CONDITION DIAGRAM

LOCATION I.D. ESTENO BLUD (SR 865) @ STH AVE
COUNTY LEE CITY FT. MYERS BEACH
DRAWN BY AYLHOLD KEHLY DATE 3/13/00
5 TH ST. ST. AND US.
SYMBOLS
A COMPINITOR OF T
HEDGE COMBINATION POLE COMPLEAD SIGN TRAFFIC SIGNAL POLE TRAFFIC SIGNAL HEAD TRAFFIC SIGNAL POLE
RIGHT OF WAY LINE A HYDRANT PED. SIGNAL HEAD
FENCE CONTROLLER CABINET & PED, PUSHBUTTON
GUARDRAIL [] VEHICLE DETECTOR LOOP THE SIGNAL (W/GATE)

ESTERO BLVD/5TH AVENUE AM PEAK based on new traffic flows with new layout Intersection ID:

Roundabout

Table S.15 - CAPACITY AM	AND LEVEL	OF SERVICE	(HCM STYLE)
--------------------------	-----------	------------	-------------

Mov Mov					LOS
No. Тур	(veh	(veh	Satn	Delay	
	/h)	/h)	(v/c)		
West: West Ap	proach				
12 LTR	283		0.377	5.1	В
			0.377		
South: South	Approach				
32 LTR	780		0.493	0.8	В
	780	1581	0.493		
East: East Ap	proach				
22 LT	31	560	0.055	6.9	B n+
23 R (Con)			0.007		A+
			0.055		
North: North	Approach				
42 LTR	930	1681	0.553*	0.7	B
			0.553		
ALL VEHICLES:					
INTERSECTION:	2037	6472	0.553	1.5	В

Level of Service calculations are based on average control delay including geometric delay (HCM criteria), independent of the current delay definition used. For the criteria, refer to the "Level of Service" topic in the SIDRA Output Guide or the Output section of the on-line help.

--- End of SIDRA Output ---

[#] Level Of Service for continuous movements based on density/concentration

^{*} Maximum v/c ratio, or critical green periods

ESTORO BLVD/5TH AVENUE PM PEAK new traffic flow based on new layout Intersection ID:

Roundabout

Table	S 15	_	CAPACITY	ΔMD	LEVEL.	OF	SERVICE	(HCM	CTVI.F)
IUDIC	0.10		CWLWCITI	TATATA		Or.	SELAICE	111011	ロエエカロノ

			THIE HEV.	DE OF DEA	CVICE (II.	
Mov No.	Тур	Flow (veh /h)	Cap. (veh /h)	Deg. of Satn (v/c)	Delay	LOS
	West A		809	0.684		
		553	809	0.684	7.9	С
	South	Approach	1249	0.808*	4.6	В
		1009	1249	0.808	4.6	В
	East Ap	pproach				
22 L ^r 23 R		30	1900	0.146 0.016	0.0	A#
			2215	0.146		В
	North	Approach 985	1573	0.626	0.9	В
		985	1573	0.626	0.9	В
	EHICLES:	2623	5846	0.808	4.0	В
	SECTION:	2623	5846	0.808	4.0	В

Level of Service calculations are based on average control delay including geometric delay (HCM criteria), independent of the current delay definition used. For the criteria, refer to the "Level of Service" topic in the SIDRA Output Guide or the Output section of the on-line help.

[#] Level Of Service for continuous movements based on density/concentration

^{*} Maximum v/c ratio, or critical green periods

⁻⁻⁻ End of SIDRA Output ---

ESTERO BLVD/5TH AVENUE

AM PEAK BASED ON NEW COUNTS AND 15 PERCENT INCREASE IN TRAFFIC Intersection ID:

Roundabout

Table S.15 - CAPACITY AND LEVEL OF SERVICE (HCM STYLE)

lable 3	5.15 - C	APACITI	иил пел	EL OF SER	VICE (III	on otti
	Тур	(veh /h)	Cap. (veh /h)	Deg. of Satn (v/c)		LOS
	West Ap	325		0.492	7.7	В
		325	661	0.492		
		Approach		0.588		
				0.588		
22 L'I	East Ap	proach 35	463	0.076 0.008	9.1	С
				0.076		
	North	Approach		0.654*		
				0.654		В
ALL VE	EHICLES:			0.654		В
INTERS				0.654	2.1	В

Level of Service calculations are based on average control delay including geometric delay (HCM criteria), independent of the current delay definition used. For the criteria, refer to the "Level of Service" topic in the SIDRA Output Guide or the Output section of the on-line help.

Level Of Service for continuous movements based on density/concentration

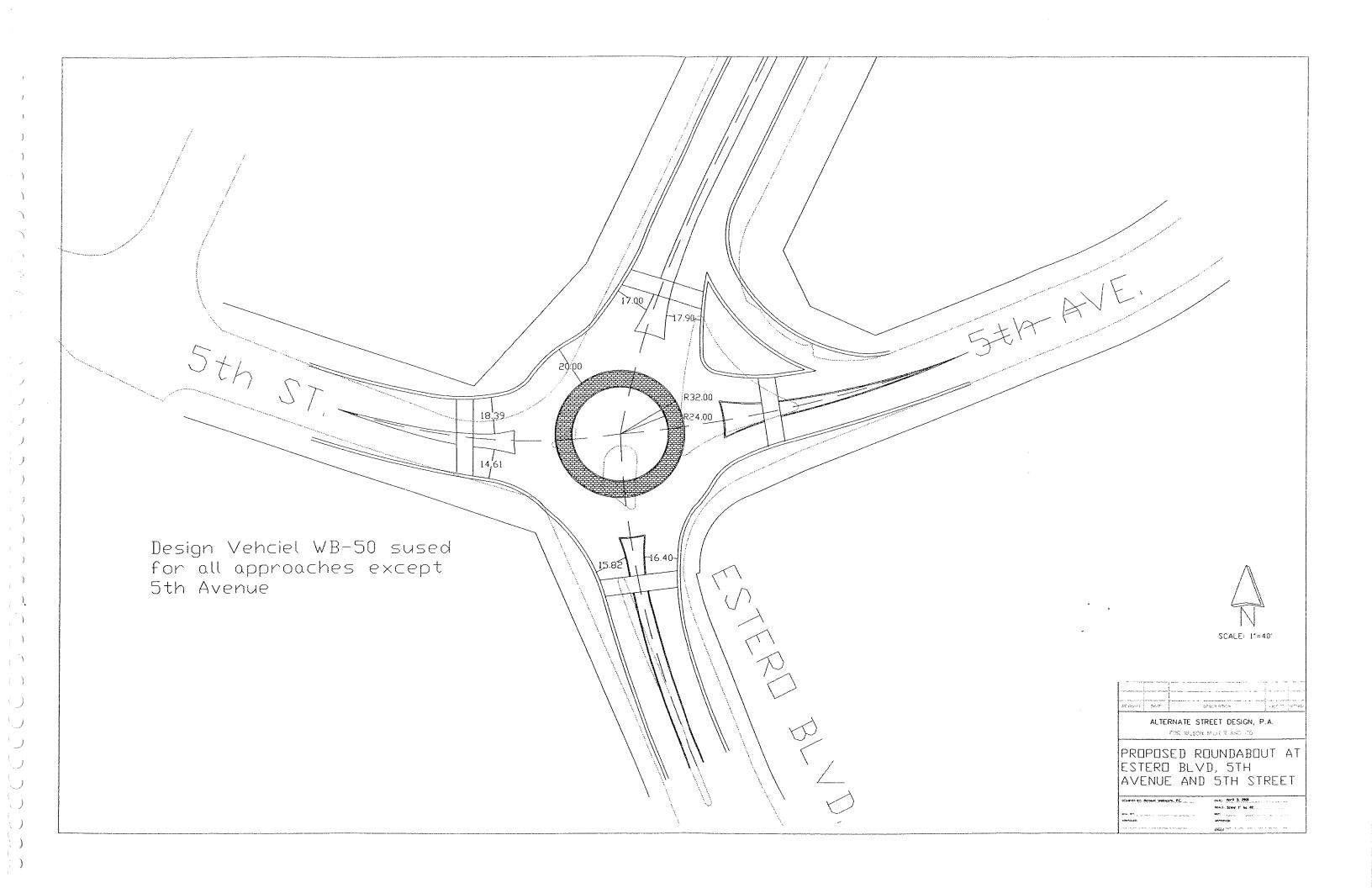
--- End of SIDRA Output ---

^{*} Maximum v/c ratio, or critical green periods

PM PEAK new traffic flow based on new layout with 15 percent more traffic Intersection ID:

Roundabout

Table S.15 - CAPACITY AND LEVEL OF SERVICE (HCM STYLE)


rabre .	3.13	C111111C111			•	
Mov No.	Mov Typ	Total Flow (veh /h)	Total Cap. (veh /h)	Deg. of Satn (v/c)	Aver. Delay (sec)	LOS
	West A	approach 635	680	0.934	24.8	D
		635	680	0.934	24.8	D
	South	Approacl	n 1156	1.003*	24.8	D
		1160	1156	1.003	24.8	D
East: 22 LT	East A [pproach 52 34	156 1900	0.333	23.7	D A#
		86	2056	0.333	14.3	С
	North	Approach	n 1491	0.759	1.7	
		1132	1491	0.759	1.7	В
ALL VE	EHICLES	: 3013	5383	1.003	15.8	
INTERS	SECTION	: 3013	5383	1.003	15.8	C

Level of Service calculations are based on average control delay including geometric delay (HCM criteria), independent of the current delay definition used. For the criteria, refer to the "Level of Service" topic in the SIDRA Output Guide or the Output section of the on-line help.

[#] Level Of Service for continuous movements based on density/concentration

Maximum v/c ratio, or critical green periods

⁻⁻⁻ End of SIDRA Output ---


```
HCS: Unsignalized Intersections Release 3.1b
             TWO-WAY STOP CONTROL(TWSC) ANALYSIS
malyst: J. Perry
ntersection: Estero Blvd. @ 5th St. & 5th Ave.
ount Date: Dec. 22, 1999
ime Period: PM Peak
ntersection Orientation: North-South Major St.
'ehicle Volume Data:
pvements:
         1
                2 3
Dlume: 146 731 30 638 247
FR: 154 769 32 672 260
                                  329 194
                        672 260
       0.95
                                   346 204
HF:
              0.95 0.95 0.95 0.95 0.95
'HV :
         0.02 0.02 0.02 0.02 0.02
                                    0.02 0.02
edestrian Volume Data:
ovements:
L-----
low:
                                                               6 5
ane width:
alk speed:
Blockage:
ledian Type: Raised Curb
of vehicles: 3
                                                      12 -
lared approach Movements:
of vehicles: Eastbound
of vehicles: Westbound
ane usage for movements 1,2&3 approach:
                                                              123
    Lane 1 Lane 2
                                            Lane 3
                          T R L
                                           T R
         N
               и и
                          Y
                                Y
                                     N
pannelized: N
rade:
          0.00
ne usage for movements 4,5%6 approach:
        Lane 1
                                            Lane 3
                        T R L
                                        T R
                   L
                         N
         Y N
                    N
                               Y
                                     N
                                           N N
.hannelized:
          Y
rade:
          0.00
ane usage for movements 7,8&9 approach:
      Lane 1
                      Lane 2
         T R L
                          T R L
                                          T R
   N
                         N
                    N
                               N
                                     N
                                           N
hannelized:
           Y
         0.00
ˈrade;
```

L	for moveme Lane 1		-	Lane 2			Lane		
		R	L 	T 	R 	L	T		~
N	N	Y	N	N	N	N	И	N	
hannelized:	Y								
rade:	0.00								
ata for Com	puting Ef	fect of	Delay t	o Major	Street	Vehicles	:		
hared ln vo	olume mad	or th m	obialoa			thbound			hbound
hared in vo	lume mai	or rt v	enicles:			0		0	
at flow rat	e, maior	th vehi	cles.			0		0 1700	
at flow rat	e, major	rt vehi	cles:		17			1700	
umber of ma	jor stree	t throu	gh lanes	:		1		1700	
			_			-		1	
ength of st	udy perio	d, hrs:	0.2	5					
orksheet 4	Critical	Can an	a malla						
	CIICICAI	Gap and	T LOTIOM.	-ub rime	carcur	ation.			
ritical Gap	Calculat	ions:							
ovement	1	9	12						
					 -				
c,base		6.2							
C, nv	1.0	1.0	1.0						
hv	0.02	0.02							
c,g		0.1							
3,1t	0.00								
C, T:	0.0	0.0	0.0						
1 stage	0.00	0.00	0.00						
	0.00								
C	0.00	0.00	0.00						
1 stage	4.1	6.2	6.2						
2 stage	4.1		6.2						
ollow Up Tir	ne Calcula	ations:							
ovement	1	9	12						
f bage									
f,base f,HV		3.3							
hv	0.9 0.02		0.9						
f	2,2		0.02 3.3						
		J.J	3.3						
orksheet 6 1	mpedance	and cap	acity eq	uations					
ep 1: RT fr					9		1	.2	
onflicting F					785		67	'2	
otential Cap	acity	1			393		4.5		
edestrian Im ovement Capa	peuance F	actor			1.00		1.0		
obability c		ree ct			393		45		
		ree St.			0.12		0.5	5	
ep 2: LT fr	om Maior	St.			4			1	
								1	
nflicting F							67		
tential Cap	acity						91		
destrian Tm	pedance F	actor					1.0		
								-	
vement Capa	city						91	9	
vement Capa obability o	city f Queue f	ree St.					91 0.8		

tep 3: TH from Minor St. art 1- First Stage	8	11	
onflicting Flows	1093		
Otential Capacity	293	672 458	
edestrian Impedance Factor	1.00	1.00	
ap. Adj. factor due to Impeding mvmnt	0.83	1.00	
ovement Capacity	244	458	
robability of Queue free St.	1.00	1.00	
art 2- Second Stage			
low #1 i at i a a m			
onflicting Flows otential Capacity	672	1108	
edestrian Impedance Factor	458	288	
ap. Adj. factor due to Impeding mvmnt	1.00	1.00	
ovement Capacity	1.00 458	0.83	
		240	
art 3- Single Stage			
onflicting Flows			
onfileting Flows otential Capacity	1764	1780	
edestrian Impedance Factor	85	83	
ap. Adj. factor due to Impeding mymnt	1.00	1.00	
evement Capacity	0.83 71	0.83	
		69 	
esult for 2 stage process:			
}	0.97	0.97	
t	0.74	2.28	
robability of Queue free St.	210 1.00	224	
	1.00	1.00	
ep 4: LT from Minor St.	Two-stage gap a	cceptance 10	
ep 4: LT from Minor St.	7	10	
ep 4: LT from Minor St. rt 1- First Stage onflicting Flows	7 1093	10 672	
cep 4: LT from Minor St. art 1- First Stage ponflicting Flows etential Capacity	7 1093 262	10 672 449	
cep 4: LT from Minor St. art 1- First Stage conflicting Flows etential Capacity control of the c	7 1093 262 1.00	10 672 449 1.00	
ep 4: LT from Minor St. ort 1- First Stage onflicting Flows stential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mymnt	1093 262 1.00 0.83	10 672 449 1.00 1.00	
ep 4: LT from Minor St. rt 1- First Stage onflicting Flows stential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mymnt evement Capacity	7 1093 262 1.00 0.83 218	10 672 449 1.00	
rt 1- First Stage Inflicting Flows International Capacity Indestrian Impedance Factor Inp. Adj. factor due to Impeding mymnt Inverser Capacity International Capacity Inter	1093 262 1.00 0.83 218	10 672 449 1.00 1.00	
rt 1- First Stage Inflicting Flows Stential Capacity Edestrian Impedance Factor p. Adj. factor due to Impeding mymnt Evement Capacity rt 2- Second Stage Inflicting Flows	1093 262 1.00 0.83 218	10 672 449 1.00 1.00	
rt 2- Second Stage rep 4: LT from Minor St. art 1- First Stage report of the stage of the sta	1093 262 1.00 0.83 218	672 449 1.00 1.00 449	
rt 2- Second Stage rt 2- Second Stage rt 2- Second Stage rflicting Flows restricting Flows rt 2- Second Stage restricting Flows tential Capacity restricting Flows tential Capacity destrian Impedance Factor	1093 262 1.00 0.83 218 802 381 1.00	10 672 449 1.00 1.00 449	
rt 2- Second Stage rt 2- Second Stage rep 4: LT from Minor St. rt 2- Second Stage rt 3- Second Stage rt 4- Second Stage rt 5- Second Stage rt 6- Second Stage rt 7- Second Stage rt 8- Second Stage rt 9- Adj. factor due to Impeding mymnt	1093 262 1.00 0.83 218 802 381 1.00 0.55	10 672 449 1.00 1.00 449	
rt 2- Second Stage rt 2- Second Stage rep 4: LT from Minor St. rt 2- Second Stage rt 3- Second Stage rt 4- Second Stage rt 5- Second Stage rt 6- Second Stage rt 7- Second Stage rt 8- Second Stage rt 9- Adj. factor due to Impeding mymnt	1093 262 1.00 0.83 218 	10 672 449 1.00 1.00 449	
rt 1- First Stage Inflicting Flows Internal Capacity Internal Cap	1093 262 1.00 0.83 218 802 381 1.00 0.55 210	10 672 449 1.00 1.00 449	
rt 1- First Stage Inflicting Flows International Capacity Internati	1093 262 1.00 0.83 218 802 381 1.00 0.55 210	10 672 449 1.00 1.00 449	
rt 1- First Stage onflicting Flows etential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mymnt evement Capacity rt 2- Second Stage onflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mymnt vement Capacity rt 3- Single Stage onflicting Flows	1093 262 1.00 0.83 218 802 381 1.00 0.55 210	10 672 449 1.00 1.00 449 1093 262 1.00 0.10 26	
rt 1- First Stage onflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mymnt ovement Capacity rt 2- Second Stage onflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mymnt vement Capacity rt 3- Single Stage onflicting Flows tential Capacity	1093 262 1.00 0.83 218 802 381 1.00 0.55 210	10 672 449 1.00 1.00 449 1093 262 1.00 0.10 26	
rt 1- First Stage onflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mymnt ovement Capacity rt 2- Second Stage onflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mymnt vement Capacity rt 3- Single Stage onflicting Flows tential Capacity destrian Impedance Factor	1093 262 1.00 0.83 218 802 381 1.00 0.55 210	10 672 449 1.00 1.00 449 1093 262 1.00 0.10 26	
rt 2- Second Stage Inflicting Flows Itential Capacity Idestrian Impedance Factor p. Adj. factor due to Impeding mymnt Ivement Capacity rt 3- Single Stage Inflicting Flows Itential Capacity Idestrian Impedance Factor J. L. Min T Impedance factor	1093 262 1.00 0.83 218 802 381 1.00 0.55 210	10 672 449 1.00 1.00 449 1093 262 1.00 0.10 26 1764 66 1.00 0.83	
rep 4: LT from Minor St. art 1- First Stage conflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mymnt povement Capacity art 2- Second Stage conflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mymnt vement Capacity rt 3- Single Stage art 3- Single Stag	1093 262 1.00 0.83 218 802 381 1.00 0.55 210	10 672 449 1.00 1.00 449 1093 262 1.00 0.10 26 1764 66 1.00 0.83 0.87	
rep 4: LT from Minor St. rt 1- First Stage	1093 262 1.00 0.83 218 802 381 1.00 0.55 210	10 672 449 1.00 1.00 449 1093 262 1.00 0.10 26 1764 66 1.00 0.83	

Pagult for 2 stars										
Result for 2 stage	process: 									
a				0.9	97		0.97			
У					26		23.37			
Ct					55		25			
Worksheet 10 delay,	mieue length	, and t	00							
walled to delay,	queue renger	i, allu I	305							
Movement	1	4	7	8	9	1.0	11	12		
			1						-	
						İÌ			İ	
/- 13			1							
v(vph)	154				346			204		
C m(vph)	919				393			456		
v/c -	0.17				0.88			0.45		
95% queue length										
Control Delay	9.7				53.6			19.1		
LOS	A				F			17.1 C		
Approach Delay				53.6	•		19.1	C		
Approach IOC				0			17.1			

F

C

Approach LOS

```
HCS: Unsignalized Intersections Release 3.1b
              TWO-WAY STOP CONTROL (TWSC) ANALYSIS_
nalyst: J. Perry
intersection: Estero Blvd. @ 5th St. & 5th Ave.
unt Date: Dec. 22, 1999
ime Period: PM Peak +15%
ntersection Orientation: North-South Major St.
Phicle Volume Data:
         1 2 3 5 6 9 12
vements:
lume: 168 841 35 734
                              284 378
                                         223
          177 885
                     37 773
                              299 398
                                         235
F:
         0.95 0.95
                    0.95 0.95
                              0.95 0.95 0.95
:: VF
         0.02 0.02 0.02 0.02 0.02 0.02 0.02
)destrian Volume Data:
ovements:
₹ow:
áne width:
lk speed:
Blockage:
edian Type: Raised Curb
Zared approach Movements:
of vehicles: Eastbound
of vehicles: Westbound
ane usage for movements 1,2&3 approach:
                  Lane 2
L T F
          Lane 1
                                             Lane 3
                            T R L
          T
              R
                     N
               N
                           Y
                                 Y
                                       N
annelized:
rade: 0.00
he usage for movements 4,5%6 approach:
                     Lane 2
          Lane 1
                    L
                                             Lane 3
 L
                           T R
                                           T R
         Y N
                   N N Y N
hannelized:
           Y
ade:
          0.00
ne usage for movements 7,8&9 approach:
        Lane 1
      T R L
         N
               Y
                    N N N
                                     N
                                            n n
annelized:
          Y
```

ade: 0.00

L	Lane 1 T	R	.11&12 app	Lane 2 T	R	L	Lane 3	3 R	
N			N		·				
Channelized:									
Grade:									
Data for Comp	uting Ef	fect of	Delay to	Major S	treet	Vehicles	:		
						thbound			One had a second
Shared ln vol	ume, maj	or th v	ehicles:			0			Southbound 0
Shared ln vol	ume, maj	or rt v	ehicles:			0			0
Sat flow rate	, major	th vehi	cles:		17	00			1700
Sat flow rate	, major	rt vehi	cles:		17	00			1700
Number of maj	or stree	t throu	gh lanes:			1			1
Length of stu	dy perio	d, hrs:	0.25	;					
Morksheet 4									
			a rollow	ap cime	carcur	acion.			
Critical Gap Movement		ions:	12						
c,base	4.1	6.2	6.2						
c,hv		1.0							
hv		0.02							
c,g		0.1							
		0.00							
3,1t	0.0	0.0	0.0						
C,T:									
1 stage 2 stage	0.00	0.00	0.00						
z stage : c	0.00	0.00	0.00						
1 stage	4.1	<i>c</i> 0							
2 stage	4.1	6.2	6.2 6.2						.
5	4.1.	0.2	6.2						
ollow Up Time	e Calcula	ations.							
lovement	1	9	12						
	- -		12						
f,base	2.2	3.3	3 3						
f,HV		0.9							
hv hv	0.02	0.02							
f	2.2	3.3							
orksheet 6 Im	pedance	and cap	acity equ	ations					
tep 1: RT fro	m Minor	St.			9		1:	2	
onflicting Fl	ows				904		77:	·	
otential Capa	city				336		399		
edestrian Imp	edance F	actor			1.00		1.00		
	ity				336		399		
ovement Capac	Queue f	ree St.			0.00		0.41		
ovement Capac robability of									
ovement Capac robability of									
robability of	m Major	St.			4		1		
ovement Capacerobability of	m Major	St.			4				·
robability of tep 2: LT fro pnflicting Fl	m Major 	St.			4		7 7 3	 3	
ovement Capace robability of the control of the con	m Major ows city	st. 			4		773 843	 3 3	
ovement Capace robability of the control of the control of the conflicting Fluctural Capace destrian Imp	m Major ows city edance Fa	st. 			4		773 843 1.00	3 3 3	
ovement Capac	m Major ows city edance Fa	St.			4		773 843	3 3 3 3	

tep 3: TH from Minor St.	8	11	
art 1- First Stage	ŏ	11	
onflicting Flows	1257		
otential Capacity	245	412	
destrian Impedance Factor	1.00	1.00	
p. Adj. factor due to Impeding mvmnt	0.79	1.00	
vement Capacity	193	412	
cobability of Queue free St.	1.00	1.00	
art 2- Second Stage	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
onflicting Flows	773	1276	
tential Capacity	412	240	
edestrian Impedance Factor	1.00	1.00	
p. Adj. factor due to Impeding mymnt	1.00	0.79	
vement Capacity	412	189	
ert 3- Single Stage			
		·	
onflicting Flows	2030	2048	
otential Capacity	58	57	
destrian Impedance Factor p. Adj. factor due to Impeding mvmnt	1.00	1.00	
ovement Capacity	0.79 46	0.79	
	46	45 	
sult for 2 stage process:			
	0.97	0.97	
	0.78	2.54	
t chability of Occurs 5	163	178	
obability of Queue free St.	1.00	1.00	
	·		
rksheet 7b - Computation of the effect of	Two-stage gar	iccentance	
ep 4: LT from Minor St. rt 1- First Stage	7	10	
nflicting Flows	1257	773	. — — — — — — — — — — — — — — — — — — —
nflicting Flows tential Capacity	1257 212	773 395	
nflicting Flows tential Capacity destrian Impedance Factor	212 1.00		
nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt	212 1.00 0.79	395 1.00 1.00	
nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt	212 1.00	395 1.00	
nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity	212 1.00 0.79	395 1.00 1.00	
nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 2- Second Stage	212 1.00 0.79 167	395 1.00 1.00	
nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity	212 1.00 0.79 167	395 1.00 1.00 395	
nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 2- Second Stage nflicting Flows tential Capacity	212 1.00 0.79 167	395 1.00 1.00 395	
nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 2- Second Stage nflicting Flows tential Capacity destrian Impedance Factor	212 1.00 0.79 167 	395 1.00 1.00 395 1257 212 1.00	
nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 2- Second Stage nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt	212 1.00 0.79 167 	395 1.00 1.00 395 	
nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 2- Second Stage nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity	212 1.00 0.79 167 	395 1.00 1.00 395 1257 212 1.00	
onflicting Flows stential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mymnt vement Capacity rt 2- Second Stage nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mymnt vement Capacity	212 1.00 0.79 167 	395 1.00 1.00 395 	
nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 2- Second Stage nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 3- Single Stage	212 1.00 0.79 167 	395 1.00 1.00 395 	
nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 2- Second Stage nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 3- Single Stage	212 1.00 0.79 167 	395 1.00 1.00 395 	
nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 2- Second Stage nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 3- Single Stage nflicting Flows tential Capacity	212 1.00 0.79 167 	395 1.00 1.00 395 	
nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 2- Second Stage nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 3- Single Stage nflicting Flows tential Capacity	212 1.00 0.79 167 	395 1.00 1.00 395 	
nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 2- Second Stage nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 3- Single Stage nflicting Flows tential Capacity	212 1.00 0.79 167 922 327 1.00 0.41 135 2179 34 1.00 0.79	395 1.00 1.00 395 	
omflicting Flows destrian Impedance Factor p. Adj. factor due to Impeding mymnt vement Capacity rt 2- Second Stage rflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mymnt vement Capacity rt 3- Single Stage rt 3- Single Stage mflicting Flows tential Capacity rt 3- Single Stage mflicting Flows tential Capacity destrian Impedance Factor j. L, Min T Impedance factor j. L, Min T Adj. Imp Factor.	212 1.00 0.79 167 922 327 1.00 0.41 135 2179 34 1.00 0.79 0.84	395 1.00 1.00 395	
nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 2- Second Stage nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 3- Single Stage nflicting Flows tential Capacity	212 1.00 0.79 167 922 327 1.00 0.41 135 2179 34 1.00 0.79	395 1.00 1.00 395 	

Result for 2 stage	process:								
a				0.9		w	0.97		
Y C t				-2.88			0.00 0		
Worksheet 10 delay	queue length,	, and I	os						
Movement	1	4	7	8	9	10	11	12	
									-
			1					i	
v(vph)	177		'		398	. ,		235	,
C m(vph)	843				336			399	
v/c	0.21				1.19			0.59	
95% queue length									
Control Delay	10.4			1	44.0			26.1	
LOS	В				F			D	
Approach Delay	•		1	44.0			26.1		

Approach Los

```
HCS: Unsignalized Intersections Release 3.1b
                TWO-WAY STOP CONTROL (TWSC) ANALYSIS
Analyst: J. Perry
ntersection: Estero Blvd. @ 5th St. & 5th Ave.
Jount Date: Dec. 22, 1999 w/Latent Demand
Time Period: PM Peak
intersection Orientation: North-South Major St.
Wehicle Volume Data:
ovements:
            1 2 3 4 5 6 7 8 9 10
                                                                       11
                                                                             12

    146
    731
    30
    17
    621
    247
    20
    20
    26

    154
    769
    32
    18
    654
    260
    21
    21
    27

olume:
                                                                303 19 175
IFR:
                                                     21
                                                                319
                                                                       20
                                                                           184
HF:
          0.95 0.95 0.95 0.95
                                         0.95
                                               0.95
                                                    0.95 0.95
                                                                 0.95 0.95
YHV:
          0.02 0.02 0.02 0.02 0.02
                                         0.02 0.02 0.02 0.02
                                                                 0.02 0.02
edestrian Volume Data:
                                                                          654
ovements:
L-----
low:
ane width:
alk speed:
 Blockage:
                                                               10 ....
                                                               11
                                                                                       8
edian Type: Raised Curb
of vehicles: 3
lared approach Movements:
of vehicles: Eastbound
of vehicles: Westbound
ane usage for movements 1,2&3 approach:
        Lane 1
                    Lane 2
                                                  Lane 3
           Т
               R
                               T
                                    R
    Y
                 N
                        N
                              Y
                                            N
                                                         N
annelized: N
rade: 0.00
ne usage for movements 4,5&6 approach:
           Lane 1
                                                  Lane 3
    L
           T R
                             T R
                       L
                      и у
                N
                                          N
nannelized:
            N
ade:
           0.00
ne usage for movements 7,8&9 approach:
        Lane 1
                              Lane 2
                                                  Lane 3
         T R L
                             T R
                                                  T R
          Y Y N N Y
                                         n n
```

annelized: Y ade: 0.00

Lane usage fo			11&12 a					_	
L	Lane 1 T	R	L	Lane T	2 R	L	L T	ane 3 R	
			~						
Y	N	N	N	Y	Y	И	N	N	
Channelized: Grade:	Y 0.00								
Data for Comp	outing Ef	fect of	Delay	to Majo	r Stree	t Vehic	les:		
Charad la val			-1		И	orthbou	nd		Southbound
Shared ln vol Shared ln vol						0 0			0 0
Sat flow rate	e, major	th vehi	cles:			1700			1700
Sat flow rate						1700			1700
Number of maj	or stree	t through	gh lane	S:		1			1
Length of stu	idv nerio	d hre.	0	25					
20119011 011 200	ay perio	a, ms.	0.	2.0					
Worksheet 4	Critical	Gan and	d Follo	w-un ti	me calc	ulation			
			~ 10110	., up (1)	c carc	u1461011	•		
Critical Gap									
Movement	1	4	7	8	9	10	11	12	
t c,base	4.1	4.1	7.1	6.5	6.2	7.1	6.5	6.2	
t c,hv	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
P hv	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	
t c,g G	0.00	0.00	0.2	0.2 0.00	0.1 0.00	0.2 0.00	0.2	0.1 0.00	
t 3,1t	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0	
t c,T:									
1 stage	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
2 stage t c	0.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	
1 stage	4.1	4.1	7.1	6.5	6.2	7.1	6.5	6.2	
2 stage	4.1	4.1	6.1	5.5	6.2	6.1	5.5	6.2	
Follow Up Tim	o Colaul								
Movement	le carcur.	4	7	8	9	10	11	12	
					- -				
t f,base		2.2		4.0	3.3	3.5		3.3	
t f,HV P hv		0.9 0.02			0.9		0.9 0.02		
t f		2.2				3.5		3.3	
Worksheet 6 I	mpedance	and cap	acity e	equation	ns				
Step 1: RT fr						9		12	
Conflicting F						785		204	
Potential Cap						193		784 393	
Pedestrian Imp	pedance 1	Factor				00		1.00	
Movement Capa						193		393	
Probability of						93		0.53	
Step 2: LT fro						4		1	
Conflicting E		·							
Conflicting Fi						01 22		914 746	
Pedestrian Imp		actor				00		1.00	
Movement Capac	city					22		746	
Probability of						98		0.79	

ep 3: TH from Minor St.	8	11	
rt 1- First Stage		1.1	
		010	
nflicting Flows	1093	819	
tential Capacity	290	389	
destrian Impedance Factor	1.00	1.00	
p. Adj. factor due to Impeding mvmnt	0.79	0.98	
vement Capacity	231	381	
obability of Queue free St.	0.91	0.95	
rt 2- Second Stage			
nflicting Flows	949	1108	
tential Capacity	339	285	
destrian Impedance Factor	1.00	1.00	
p. Adj. factor due to Impeding mvmnt	0.98	0.79	
vement Capacity	331	227	
rt 3- Single Stage			
nflicting Flows	2042	1928	
tential Capacity	56	66	
destrian Impedance Factor	1.00	1.00	
p. Adj. factor due to Impeding mvmnt	0.78	0.78	
vement Capacity	44	52	
sult for 2 stage process:			
	0.97	0.97	
	1.39	2.09	
t	153	193	
obability of Queue free St.	0.86	193 0.90	
t obability of Queue free St.	0.86	0.90	
obability of Queue free St.	0.86	0.90	
obability of Queue free St. rksheet 7b - Computation of the effect of ep 4: LT from Minor St.	0.86	0.90	
obability of Queue free St. rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage	0.86 Two-stage gap a	0.90 cceptance 10	
obability of Queue free St. rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage nflicting Flows	0.86 Two-stage gap a 7	0.90 cceptance 10 819	
rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage nflicting Flows tential Capacity	0.86 Two-stage gap a 7 1093 260	0.90 cceptance 10 819 369	
rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage nflicting Flows tential Capacity destrian Impedance Factor	0.86 Two-stage gap a 7 1093 260 1.00	0.90 cceptance 10 819 369 1.00	
cksheet 7b - Computation of the effect of ep 4: LT from Minor St. ct 1- First Stage ential Capacity destrian Impedance Factor of Adj. factor due to Impeding mvmnt	0.86 Two-stage gap a 7 1093 260 1.00 0.79	0.90 cceptance 10 819 369 1.00 0.98	
cksheet 7b - Computation of the effect of ep 4: LT from Minor St. ct 1- First Stage ential Capacity destrian Impedance Factor of Adj. factor due to Impeding mvmnt vement Capacity	0.86 Two-stage gap a 7 1093 260 1.00 0.79 206	0.90 cceptance 10 819 369 1.00	
rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage enflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mymnt yement Capacity	0.86 Two-stage gap a 7 1093 260 1.00 0.79 206	0.90 cceptance 10 819 369 1.00 0.98	
rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity	0.86 Two-stage gap a 7 1093 260 1.00 0.79 206	0.90 cceptance 10 819 369 1.00 0.98 361	
rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 2- Second Stage	0.86 Two-stage gap a 7 1093 260 1.00 0.79 206	0.90 cceptance 10 819 369 1.00 0.98 361	
rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage inflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 2- Second Stage inflicting Flows tential Capacity	0.86 Two-stage gap a 7 1093 260 1.00 0.79 206	0.90 cceptance 10 819 369 1.00 0.98 361	
rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage nflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity	0.86 Two-stage gap a 7 1093 260 1.00 0.79 206 829 365 1.00	0.90 cceptance 10 819 369 1.00 0.98 361	
rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage inflicting Flows tential Capacity destrian Impedance Factor o. Adj. factor due to Impeding mymnt vement Capacity rt 2- Second Stage inflicting Flows tential Capacity control of the effect of the factor of the effect of the factor of the effect of the factor of the effect of the factor of the effect of the factor of the effect of the factor of the effect of the eff	0.86 Two-stage gap a 7 1093 260 1.00 0.79 206	0.90 cceptance 10 819 369 1.00 0.98 361	
rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage enflicting Flows tential Capacity destrian Impedance Factor o. Adj. factor due to Impeding mymnt yement Capacity et 2- Second Stage enflicting Flows tential Capacity ct 2- Second Stage enflicting Flows tential Capacity destrian Impedance Factor o. Adj. factor due to Impeding mymnt	0.86 Two-stage gap a 7 1093 260 1.00 0.79 206	0.90 cceptance 10 819 369 1.00 0.98 361	
rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage	0.86 Two-stage gap a 7 1093 260 1.00 0.79 206 829 365 1.00 0.49 180	0.90 cceptance 10 819 369 1.00 0.98 361 	
rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage Inflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 2- Second Stage Inflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 3- Single Stage	0.86 Two-stage gap a 7 1093 260 1.00 0.79 206 829 365 1.00 0.49 180	0.90 cceptance 10 819 369 1.00 0.98 361	
rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage	0.86 Two-stage gap a 7 1093 260 1.00 0.79 206 829 365 1.00 0.49 180	0.90 cceptance 10 819 369 1.00 0.98 361 1103 256 1.00 0.67 172	
rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage inflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 2- Second Stage inflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 3- Single Stage inflicting Flows tential Capacity	0.86 Two-stage gap a 7 1093 260 1.00 0.79 206 829 365 1.00 0.49 180	0.90 cceptance 10 819 369 1.00 0.98 361 1103 256 1.00 0.67 172	
rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage	0.86 Two-stage gap a 7 1093 260 1.00 0.79 206 829 365 1.00 0.49 180 1922 51 1.00	0.90 cceptance 10 819 369 1.00 0.98 361 1103 256 1.00 0.67 172	
rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage inflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 2- Second Stage inflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 3- Single Stage inflicting Flows tential Capacity destrian Impedance Factor j. L, Min T Impedance factor	0.86 Two-stage gap a 7 1093 260 1.00 0.79 206 829 365 1.00 0.49 180 1922 51 1.00 0.70	0.90 cceptance 10 819 369 1.00 0.98 361 1103 256 1.00 0.67 172	
rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage Inflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 2- Second Stage Inflicting Flows tential Capacity destrian Impedance Factor p. Adj. factor due to Impeding mvmnt vement Capacity rt 3- Single Stage Inflicting Flows tential Capacity rt 3- Single Stage Inflicting Flows tential Capacity rt 3- Single Stage Inflicting Flows tential Capacity destrian Impedance Factor j. L, Min T Impedance factor j. L, Min T Impedance factor j. L, Min T Impedance factor	0.86 Two-stage gap a 7 1093 260 1.00 0.79 206 829 365 1.00 0.49 180 1922 51 1.00 0.70 0.76	0.90 cceptance 10 819 369 1.00 0.98 361 1103 256 1.00 0.67 172 1923 51 1.00 0.67 0.74	
rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage inflicting Flows tential Capacity destrian Impedance Factor o. Adj. factor due to Impeding mvmnt vement Capacity rt 2- Second Stage inflicting Flows tential Capacity destrian Impedance Factor o. Adj. factor due to Impeding mvmnt vement Capacity ct 3- Single Stage inflicting Flows tential Capacity ct 3- Single Stage inflicting Flows tential Capacity ct 3- Single Stage inflicting Flows tential Capacity destrian Impedance Factor j. L, Min T Impedance factor j. L, Min T Impedance factor j. L, Min T Adj. Imp Factor. o. Adj. factor due to Impeding mvmnt	0.86 Two-stage gap a 7 1093 260 1.00 0.79 206 829 365 1.00 0.49 180 1922 51 1.00 0.70 0.76 0.41	0.90 cceptance 10 819 369 1.00 0.98 361 1103 256 1.00 0.67 172 1923 51 1.00 0.67 0.74 0.69	
rksheet 7b - Computation of the effect of ep 4: LT from Minor St. rt 1- First Stage	0.86 Two-stage gap a 7 1093 260 1.00 0.79 206 829 365 1.00 0.49 180 1922 51 1.00 0.70 0.76	0.90 cceptance 10 819 369 1.00 0.98 361 1103 256 1.00 0.67 172 1923 51 1.00 0.67 0.74	

Result for 2 stage pr	cocess:								
a y C t				34.	97 47 25		0.97 2.74 145		
Worksheet 8 Shared La	ane Calcu	lations							
Shared Lane Calculati	ons		7	8	9	10	11	12	
						!!			
v(vph) Movement Capacity Shared Lane Capacity			21 25 55	21 153			20 193 357		1
Worksheet 9-Computati	on of ef	fect of	flared	minor	street	approac	hes		
Movement	7	8	9	10	11	12			
C sep Volume Delay Q sep Q sep +1 round (Qsep +1)	25 21 347.2 2.03 3.03	0.19	14.9	54.00	25.8 0.14	393 184 22.0 1.12 2.12			
n max C sh SUM C sep n C act		3 393 571 3 571			55 357 731 4 384				
Worksheet 10 delay,qu	eue lengt 1	h, and	Los	8	9	10	11	12	

	Worksheet	10	delay, queue	length.	and LOS	S
--	-----------	----	--------------	---------	---------	---

Movement	1	4	7	8	9 1	.0	11	12		
			ļ i							
v(vph)	154	18	1 56	14	31	۵	204			
C m(vph)	746	822	55	571	14		384			
v/c	0.21	0.02	1.01	0.02	2.1		0.53			
95% queue length				*****	£4 5 A	_	0.33			
Control Delay	11.1	9.5	244.6	11.5	609.	5	24.5			
LOS	В	A	F	В		F	С			
Approach Delay				198.7		3	31.1			
Approach LOS				F			F			

```
HCS: Unsignalized Intersections Release 3.1b
              TWO-WAY STOP CONTROL (TWSC) ANALYSIS
palyst: J. Perry
ntersection: Estero Blvd. @ 5th St. & 5th Ave.
bunt Date: Dec. 22, 1999 w/Latent Demand
ime Period: PM Peak + 15%
ntersection Orientation: North-South Major St.
%hicle Volume Data:
ovements:
         1 2 3 4 5 6 7 8 9 10 11 12
FR: 168 841 35 20 715 284 23 23 30 349 22 201
FR: 177 885 37 21 753 299 24 24 32 367 23 212
ÅF:
         0.95
               0.95 0.95 0.95 0.95
                                     0.95 0.95 0.95 0.95
                                                          0.95 0.95 0.95
HV:
         0.02
               0.02 0.02 0.02 0.02
                                     0.02
                                          0.02 0.02 0.02
                                                          0.02 0.02 0.02
edestrian Volume Data:
'ovements:
ane width:
alk speed:
 Blockage:
edian Type: Raised Curb
of vehicles: 3
lared approach Movements:
of vehicles: Eastbound
of vehicles: Westbound
ane usage for movements 1,2&3 approach:
              1 Lane 2 R L T R
                                             Lane 3
       Lane 1
                           T R L
         T
   Y
         N
                           Y
               N
                     N
                                 Y
                                       N
nannelized: N
rade: 0.00
ane usage for movements 4,5%6 approach:
         Lane 1
                      Lane 2
                                           Lane 3
T R
          T R
   L
                           T R
                                       L
         N
               N
                    N Y Y N
                                           n n
           N
hannelized:
rade:
          0.00
ane usage for movements 7,8&9 approach:
        Lane 1
                                            Lane 3
   L
         T R L
                           T R
                     Ŋ
               Y
                         И У
                                      N
                                            N N
.nannelized:
          Y
rade:
         0.00
```

L	Lane 1 T	R	L	Lane T	: 2 R	L		Lane 3	R	
Y	N	N	N	Y	Y	N	ľ	I	N	
Channelized Grade:										
Data for Co	omputing Ef					t Vehic	eles:			
						orthbou	ind			Southbound
Shared ln s	_					0 0				0
Sat flow ra				•		1700			1	0 1700
Sat flow ra						1700				1700
Number of r				s:		1				1
Length of s	study perio	od, hrs:	0.	25						
										•
Worksheet 4	4 Critical	. Gap an	d Follo	w-up ti	me calc	ulation				
	ap Calculat		_ 10110	up 01	c care	41461011	•			
	1		7	8	9	10	11	12		
t c,base	4.1	4.1	7.1	6.5	6.2	7.1	6.5	6.2		
t c,hv	1.0	4.1 1.0	1.0	1.0	1.0	1.0	1.0	1.0		
P hv	0.02	0.02			0.02	0.02	0.02	0.02		
t c,g						0.2				
3 t 3,1t	0.00				0.00					
t c,T:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
1 stage	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
2 stage	0.00					1.00		0.00		
t c										
1 stage		4.1								**
2 stage	4.1		6.1	5.5	6.2	6.1	5.5	6.2		
Follow Up 1 Movement	ime Calcul? 1	ations:	7	8	9	10	11	12		
~				. 						
t f,base	2.2	2.2	3.5	4.0	3.3	3.5	4.0	3.3		
f,HV		0.9				0.9				
Phv f	0.02 2.2		0.02 3.5			0.02				
				4.0	3.3	3.5 	4.0	3.3		
Worksheet 6	Impedance	and cap	pacity e	equation	ıs					
	from Minor					9		12		
Conflicting						904		902		
Potential C						336		336		
Pedestrian Movement Ca		Factor				.00		1.00		
Movement Ca Probability		free C+				336		336		
	or Queue					. 91 		0.37		
	from Major					4		1		
Conflicting						922		1052		
otential C						41		662		
	Impedance	Factor				00		1.00		
lovement Ca						41		662		
	of Queue									

ep 3: TH from Minor St. rt 1- First Stage	8	11	
onflicting Flows	1257	944	
otential Capacity edestrian Impedance Factor	242	341	
	1.00	1.00	
ap. Adj. factor due to Impeding mvmnt ovement Capacity	0.73	0.97	
robability of Queue free St.	178 0.86	331 0.93	
		0.,,,	
art 2- Second Stage			
onflicting Flows	1094	1276	
tential Capacity	290	238	
edestrian Impedance Factor	1.00	1.00	
p. Adj. factor due to Impeding mvmnt	0.97	0.73	
ovement Capacity	282	174	
art 3- Single Stage	•		
		2220	
onflicting Flows Otential Capacity	2351	2220	
destrian Impedance Factor	36 1.00	43 1.00	
up. Adj. factor due to Impeding mvmnt	0.71	0.71	
evement Capacity	26	31	
esult for 2 stage process:			
	0.97	0.97	
_	1.92	2.46	
t obability of Queue free St.	96	143	
obability of Queue free St.	0.75	0.84	
			**
rksheet 7b - Computation of the effect of	f Two-stage gap a	acceptance	
ep 4: LT from Minor St.	7	10	
rt 1- First Stage			
nflicting Flows	1257	944	
tential Capacity	210	315	
destrian Impedance Factor	1.00	1.00	
p. Adj. factor due to Impeding mvmnt	0.73	0.97	
vement Capacity	154	306	
rt 2- Second Stage			
nflicting Flows	956		
tential Capacity	956 310	1269 206	
destrian Impedance Factor	1.00	1.00	
p. Adj. factor due to Impeding mvmnt	0.33	0.57	
vement Capacity	104	118	
rt 3- Single Stage			
	2213	2214	
nflicting Flows			
tential Capacity	31	31	
tential Capacity destrian Impedance Factor	1.00	1.00	
tential Capacity destrian Impedance Factor j. L, Min T Impedance factor	1.00 0.60	1.00 0.53	
tential Capacity destrian Impedance Factor j. L, Min T Impedance factor j. L, Min T Adj. Imp Factor.	1.00 0.60 0.69	1.00 0.53 0.63	
tential Capacity destrian Impedance Factor j. L, Min T Impedance factor	1.00 0.60	1.00 0.53	

Result for 2 stage process: a 0.97 0.97 3.63 У -1.80 Сt 93 0 Worksheet 8 Shared Lane Calculations Shared Lane Calculations Movement 7 8 9 10 11 12 11 32 367 336 93 v(vph) 24 24 23 212 Movement Capacity 0 96 143 336 Shared Lane Capacity 0 297

Worksheet 9-Computation of effect of flared minor street approaches

Movement	7	8	9	10	11	12	
C sep	0	96	336	93	143	336	
Volume	24	24	32	367	23	212	
Delay	0.0	54.9	16.8	1424.5	35.0	32.2	
Q sep	0.00	0.37	0.15	145.37	0.22	1.90	
Q sep +1	1.00	1.37	1.15	146.37	1.22	2.90	
round (Qsep +1)	1	1	1	146	1	3	
n max		1			146	- -	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
C sh		336			297		
SUM C sep		431			572		
n		3			4		
C act		431			304		

Worksheet 10 delay, queue length, and LOS

Movement	1	4	7	8	9 .10	11	12		
v(vph) C m(vph)	177 662	21 741	64	16 431	367 93		i		
v/c 95% queue length	0.27	0.03		0.04	3.96	0.77		\$	
Control Delay	12.4	10.0		13.7	1424.5	47.6			
LOS	В	В		В	F	E			
Approach Delay						887.7			
Approach LOS						F			
				~					

HCS: Signals Release 3.1b

Inter:

Analyst: J. Perry Date: 12/22/99 E/W St: 5th

City/St: Fort Myers Beach, FL

Proj #: Period: PM Peak N/S St: Center St.

			SI	GNALI	ZED II	NTERSI	ECTION	SUMM	ARY				
	Eas	stbou	nd	Wes	stbou	nd	No	rthbo	and	l Soi	uthbo	und	1
	l L	\mathbf{T}	R	l L	\mathbf{T}	R	l L	\mathbf{T}	R	l L	\mathbf{T}	R	1
	<u> </u>			_			_			_			_
No. Lanes	1 1	1	1	1	1	1	1	1	1	1	1	1	1
LGConfig	L	\mathbf{T}	R	L	T	R	l L	\mathbf{T}	R	L	\mathbf{T}	R	
Volume			175		20	26	1146	731	30	117	621	247	1
Lane Width	112.0	12.0	12.0	112.0	12.0	12.0	112.0	12.0	12.0	112.0	12.0	12.0	i
RTOR Vol	1		0	}		0	1		0	Ì		0	1

Dur	ation 0	.25	Area		CBD o							
				Sı	gnal O	perat	lons					
Pha	se Combina	tion 1	2	3	4			5	6	7	8	
EB	Left	P				NB	Left	P				
	Thru	P	P				Thru	P	P			
	Right	P	₽				Right	P	P			
	Peds					1	Peds			•		
WB	Left		P			SB	Left		P			
	Thru		P			l	Thru		P			
	Right		P			ì	Right		P			
	Peds						Peds					
NB	Right					EB	Right					
SB	Right					WB	Right					
Gre	en	15.1	1.5					7.3	29.5			
	low	4.0	4.0					4.0	4.0			
	Red	0.0	0.0					0.0	0.0			
Сус	le Length:	69.4	secs									

		Intersec	tion Pe	erforman	ce Summa	ary			
Appr/ Lane	Lane Group	Adj Sat Flow Rate	Rat	ios	Lane (Group	Appr	oach	
Grp	Capcity	(s)	V/C	g/C	Delay	LOS	Delay	LOS	_
Eastbou	ınd		·						
L	348	1593	0.92	0.218	57.6	E			
T	498	1676	0.03	0.297	17.5	В	44.0	D	
R	423	1425	0.43	0.297	22.9	С			
Westbou	ınd								
L				0.021					
${f T}$	36	1676	0.58	0.021	88.0	F			
R	30	1425	0.90	0.021	168.9	F			
Northbo	und								
L	168	1593	0.92	0.105	81.1	F			
${f T}$	985	1676	0.78	0.588	17.0	В	27.0	С	
R	838	1425	0.04	0.588	6.1	Ā			
Southbo	und								
L	212	499	0.08	0.425	12.7	В			
${f T}$	712	1676	0.92	0.425	37.7	D	31.2	С	
R	605	1425	0.43	0.425	16.3	B		_	
			=	(sec/ve			ction :	LOS =	

HCS: Signals Release 3.1b

WilsonMiller. Inc. WilsonMiller, Inc. 3200 Bailey Lane, Suite 200

Naples, FL 34105 Phone: (941) 649-4040 E-Mail: www.wilsonmiller.com

Fax: (941) 643-5716

- Ver: mal-

Intersection:

City/State:

Fort Myers Beach, FL J. Perry

Analyst: Project No: Time Period Analyzed:

PM Peak 12/22/99

Date: East/West Street Name:

5th North/South Street Name: Center St.

___VOLUME DATA___

	Ea:	stbou		Wes	stbou	nd	No	rthbo	und	l Soi	uthbo	und
	L 	T	R	L 	Т	R	l L	Т	R	L	Т	R
Volume	1303	16	175	120	20	26	1146	731	30	117	621	247
PHF	10.95	0.95	0.95	10.95	0.95	0.95	10.95	0.95	0.95	10.95	0.95	0.95
PK 15 Vol	180	4	46	15	5	7	138	192	8	15	163	65
Hi Ln Vol	ĺ			i i			i			i		
% Grade	İ	0		ì	0		i	0		i	0	
Ideal Sat	11900	1900	1900	11900	1900	1900	11900	1900	1900	11900	1900	1900
ParkExist	Ì			Ì			İ			i		
NumPark	Ì			İ			i			i		
% Heavy Veh	12	2	2	12	2	2	12	2	2	i 2	2	2
No. Lanes	1	1	1	1	1	1	i 1	1	1	i 1	1	1
LGConfig	L	\mathbf{T}	R	L	\mathbf{T}	R	i L	\mathbf{T}	R	L	T	R
Lane Width	12.0	12.0	12.0	12.0	12.0	12.0	112.0	12.0	12.0	112.0	12.0	12.0
RTOR Vol	1		0	ĺ		0			0	i		0
Adj Flow	319	17	184	121	21	27	154	769	32	118	654	260
%InSharedLn	}			İ						İ		
Prop Turns	1			1			ĺ			İ		
NumPeds	l		0	1		0	1		0	1		0
NumBus	10	0	0	10	0	0	10	0	0	10	0	0

Duration

0.25

Area Type: CBD or Similar

__OPERATING PARAMETERS___

	Ea	stbou	nd	We	stbou	nd	l No	rthbo	und	l So	uthbo	und	1
	L	\mathbf{T}	R	l L	\mathbf{T}	R	l L	\mathbf{T}	R	L	\mathbf{T}	R	1
	İ			1									!
Init Unmet	10.0	0.0	0.0	10.0	0.0	0.0	10.0	0.0	0.0	10.0	0.0	0.0	
Arriv. Type	∍ 3	3	3	13	3	3	13	3	3	13	3	3 "	
Unit Ext.	13.0	3.0	3.0	13.0	3.0	3.0	13.0	3.0	3.0	13.0	3.0	3.0	1
I Factor	1	1.00	0	1	1.00	0	1	1.00	0	1	1.00	0	i
Lost Time	12.0	2.0	2.0	12.0	2.0	2.0	12.0	2.0	2.0	12.0	2.0	2.0	j
Ext of g	12.0	2.0	2.0	12.0	2.0	2.0	12.0	2.0	2.0	12.0	2.0	2.0	ì
Ped Min g	1	0.0		1	0.0		1	0.0		1	0.0		Ì

риаск пата

				PI	HASE	DATA	·		······································			
Pha	se Combination	1	2	3	4			5	6	7	8	
EB	Left Thru Right Peds	P P P	P P			NB 	Left Thru Right Peds	P P P	P P			
WB	Left Thru Right Peds		P P P		 	SB	Left Thru Right Peds		P P P			
NB	Right				1	EB	Right					
SB	Right					WB	Right					
Gre Yel All	low	15.1 4.0 0.0	1.5 4.0 0.0		ľ			7.3 4.0 0.0	29.5 4.0 0.0			

Cycle Length: 69.4 secs

Appr./ Movement	Mvt Volume	PHF	Flow Rate	No. Lanes	Lane Group	RTOR	Adjusted Flow Rate In Lane Grp	Prop. Left Turns	Prop. Right Turns
Eastbound	[
Left	303	0.95	319	1	L		319		
Thru	16	0.95	17	1	${f T}$		17		
Right	175	0.95	184	1	R	0	184		
Westbound	l								
Left	20	0.95	21	1	L		21		
Thru	20	0.95	21	1	${ m T}$	_	21		
Right	26	0.95	27	1	R	0	27		

__VOLUME ADJUSTMENT WORKSHEET_

Northbound 0.95 0.95 0.95 154 769 32 1 1 1 154 769 Left 146 731 30 Thru \mathbf{T} 0 Right R 32 Southbound 17 0.95 18 18 Left L 0.95 621 1 1 654 260 Thru 654 Right 247 260 R 0

^{*} Value entered by user.

			SATU	RATION	FLOW AD	JUSTMEN	T WORK	SHEET_		the transition of the second	
Appr/ Lane Group	Ideal Sat Flow	f W	f HV	f G	f P	f BB	f A	f LU	f RT	f LT	Adj Sat Flow
Eastb L T R	1900 1900 1900 1900	1.000 1.000 1.000	0.980 0.980 0.980	1.000 1.000 1.000	1.000 1.000 1.000	1.000 1.000 1.000	Sec LT 0.90 0.90 0.90	Adj/I 1.00 1.00 1.00	T Sat: 1.000 0.850	0.950 1.000	1593 1676 1425
Westb L T R	1900 1900 1900 1900	1.000 1.000 1.000	0.980 0.980 0.980	1.000 1.000 1.000	1.000 1.000 1.000	1.000 1.000 1.000	Sec LT 0.90 0.90 0.90	Adj/I 1.00 1.00 1.00	T Sat: 1.000 0.850	1.000	1676 1425
North L T R	bound 1900 1900 1900	1.000 1.000 1.000	0.980 0.980 0.980	1.000 1.000 1.000	1.000 1.000 1.000	1.000 1.000 1.000	Sec LT 0.90 0.90 0.90	Adj/I 1.00 1.00 1.00	T Sat: 1.000 0.850	0.950 1.000	1593 1676 1425
South L T R	bound 1900 1900 1900	1.000 1.000 1.000	0.980 0.980 0.980	1.000 1.000 1.000	1.000 1.000 1.000	1.000 1.000 1.000	Sec LT 0.90 0.90 0.90	Adj/I 1.00 1.00 1.00	T Sat: 1.000 0.850	0.298 1.000	499 1676 1425

- Ver: mai-

			ACITY ANALY	SIS WORK	SHEET		
		Adj	Adj Sat	Flow	Green	Lane Gr	oup
Appr/	Lane	Flow Rate	Flow Rate	Ratio	Ratio	Capacity	V/C
Mvmt	Group	(v)	(s)	(v/s)	(g/C)	(c)	Ratio
Eastbound	l						
Pri.							
Sec.							
Left	L	319	1593	0.20	0.218	348	0.92
Thru	\mathbf{T}	17	1676	0.01	0.297	498	0.03
Right	R	184	1425	0.13	0.297	423	0.43
Westbound	l						
Pri.							
Sec.							
Left	L	21			0.021		
Thru	${f T}$	21	1676	0.01	0.021	36	0.58
Right	R	27	1425	0.02	0.021	30	0.90
Northboun	.d						
Pri.							
Sec.	_						
Left	F	154	1593	0.10	0.105	168	0.92
Thru	T	769	1676	0.46	0.588	985	0.78
Right	R	32	1425	0.02	0.588	838	0.04
Southboun Pri.	a						
Sec.							
Left	L	18	400	0.04	0 405	212	0.00
Thru	T T	654	499 1676	0.04	0.425	212	0.08
Right	R	260	1425	0.39 0.18	0.425 0.425	712 605	0.92
Migne	11	200	1423	0.18	0.425	603	0.43

Lost Time/Cycle, L = 0.00 sec Sum (v/s) critical = 0.00 Critical v/c(X) = 0.00

Appr Lane Grp		tios g/C	Unf Del d1	LEV Prog Adj Fact	EL OF Lane Grp Cap	SERVICE Increm Factor k	ental	HEET Res Del d3	Lane G		Appro	
East	bound											
L T R	0.92 0.03 0.43	0.218 0.297 0.297	17.3	1.000 1.000 1.000	348 498 423	0.50 0.50 0.50	31.1 0.1 3.2	0.0 0.0 0.0	57.6 17.5 22.9	E B C	44.0	D
west. L	bound	0.021		1.000		0 50		0 0				
T R	0.58 0.90 hbound	0.021		1.000	36 30	0.50 0.50 0.50	54.3 135.0	0.0 0.0 0.0	88.0 168.9	F F		
L	0.92	0.105	30 7	1.000	168	0.50	50.3	0.0	81.1	F		
T R	0.78	0.588	10.9	1.000	985	0.50	6.1	0.0	17.0 6.1	B A	27.0	С
Sout	hbound						0.1	0.0	0.1			
L T R	0.08 0.92 0.43	0.425 0.425 0.425	18.8	1.000 1.000 1.000	712	0.50 0.50 0.50	0.8 18.8 2.2	0.0 0.0 0.0	12.7 37.7 16.3	B D B	31.2	С

Intersection Delay = (sec/veh) Intersection LOS =

HCS: Signals Release 3.1b

Inter: Center St. @ 5th Ave.

Analyst: J. Perry Date: 12/22/99 E/W St: 5th

City/St: Fort Myers Beach, FL Proj #: Period: PM Peak +15%

N/S St: Center St.

		***************************************		GNAL12	ZED II	NTERSI	ECTION	SUMM	ARY				
	Eas	stbou	nd	Wes	stbou	nd	No:	rthbo	und	So	uthbo	ınd	
	ļ L	\mathbf{T}	R	L	\mathbf{T}	R	L	T	R	l L	${f T}$	R	
No. Lanes		1	1		1	1	-		- 1	-			-!
	1 1		1	T	_1	Τ.	1 1	1	1	1 1	Ţ	Ţ	l
LGConfig		-	R	l L	${f T}$	R	l L	${ m T}$	R	L	${ m T}$	R	1
Volume	1349	22	201	123	23	30	1168	841	35	120	715	284	1
Lane Width	112.0	12.0	12.0	112.0	12.0	12.0	112.0	12.0	12.0	112.0	12.0	12.0	i
RTOR Vol	1		0	1		0	1		0	1		0	i
							•		-	•		•	,

Duration 0.25 Area Type: CBD or Similar

	Signal Operations												
Pha	se Combinat	ion 1	2	3	4			5	6	7	8		
EB	Left	P			1	NB	Left	P					
	Thru	P	P		İ		Thru	P	P				
	Right	P	P		ĺ		Right	P	Р				
	Peds				ĺ		Peds						
WB	Left		P		ĺ	SB	Left		Р				
	Thru		P		1		Thru		P				
	Right		P		Ì		Right		P				
	Peds				ĺ		Peds						
NB	Right					EB	Right						
SB	Right				1	WB	Right						
Gre		15.1	1.5				_	7.3	29.5				
Yel		4.0	4.0					4.0	4.0				
	Red	0.0	0.0					0.0	0.0				
Сус	le Length:	69.4	secs										

Appr/ Lane	Lane Group	Adj Sat Flow Rate	tion Pe Rat:	erforman ios	ce Summa Lane (Appr	oach
Grp	Capcity	(s)	V/C	g/C	Delay	LOS	Delay	LOS
Eastbour	nd							
L	348	1593	1.05	0.218	90.5	F		
${f T}$	498	1676	0.05	0.297	17.6	В	64.4	E
R	423	1425	0.50	0.297	24.3	С		
Westbour	nd							
L				0.021				
${f T}$	36	1676	0.67	0.021	102.3	F		
R	30	1425	1.07	0.021	219.3	F		
Northbou								
L	168	1593	1.05	0.105	115.4	F		
T	985	1676	0.90	0.588	25.2	C	39.1	D
R	838	1425	0.04	0.588	6.2	A		
Southbou								
L	139	327	0.15	0.425	14.6	В		
T	712	1676	1.06	0.425	69.9	E	54.2	D
R	605	1425	0.49	0.425	17.4	В		
	Intersec	ction Delay	==	(sec/ve	eh) In	terse	ction 1	LOS =

HCS: Signals Release 3.1b

WilsonMiller. Inc. WilsonMiller, Inc. 3200 Bailey Lane, Suite 200

Naples, FL 34105 Phone: (941) 649-4040 E-Mail: www.wilsonmiller.com

Fax: (941) 643-5716

- Ver: mal-

Intersection: City/State:

Center St. @ 5th Ave. Fort Myers Beach, FL

Analyst: Project No: J. Perry

Time Period Analyzed: Date:

PM Peak 12/22/99

East/West Street Name: 5th
North/South Street Name: Center St.

 VC	$^{ m L}$	UME	DI	ATA.

	l Ea	stbou	nd	We	stbou	nd	l No:	rthbo	und	l Son	uthbo	und
	L	${f T}$	R	L	T	R	L	\mathbf{T}	R	L	\mathbf{T}	R
Volume	1349	22	201	23	23	30	168	841	35	20	715	284
PHF	10.95	0.95		10.95	0.95	0.95	10.95	0.95	0.95	10.95	0.95	0.95
PK 15 Vol	192	6	53	16	6	8	44	221	9	15	188	75
Hi Ln Vol	1			1			1					
% Grade	1	0		1	0		1	0		ı	0	
Ideal Sat	11900	1900	1900	11900	1900	1900	11900	1900	1900	11900	1900	1900
ParkExist	1			1			1					
NumPark	!	_	_	1						1		
% Heavy Veh	12	2	2	12	2	2	12	2	2	12	2	2
No. Lanes	1	_1	1	1	1	1	1	1	1	1	1	1
LGConfig	L	T	R	L	T	R	L	\mathbf{T}	R	L	\mathbf{T}	R
	112.0	12.0	12.0	112.0	12.0	12.0	112.0	12.0	12.0	12.0	12.0	12.0
RTOR Vol	1367	0.7	0			0	1		0	1		0
Adj Flow %InSharedLn	1367	23	212	124	24	32	1177	885	37	121	753	299
Prop Turns	1]			ļ			1		
NumPeds	1		Λ	1		0	<u>}</u>		^	!		^
NumBus	10	0	0	10	0	0	10	0	0	1	^	Ü
Mullibus	10	U	v	10	U	U	10	0	0	10	0	0

Duration

0.25

Area Type: CBD or Similar

__OPERATING PARAMETERS__

Ea L	astbound T R	We	stbound T R	l No	orthbound T R	So	uthbound T R	
Init Unmet 0.0 Arriv. Type 3 Unit Ext. 3.0 I Factor Lost Time 2.0 Ext of g 2.0 Ped Min g	0.0 0.0 3 3 3.0 3.0 1.000 2.0 2.0 2.0 2.0 0.0	0.0 3 3.0 2.0 2.0	0.0 0.0 3 3 3.0 3.0 1.000 2.0 2.0 2.0 2.0 0.0	0.0 3 3.0 2.0 2.0	0.0 0.0 3 3 3.0 3.0 1.000 2.0 2.0 2.0 2.0 0.0		0.0 0.0 3 3 3.0 3.0 1.000 2.0 2.0 2.0 2.0	

PHASE DATA

					MOE	DAIA	·	~			
Phas	se Combination	n 1	2	3	4	I		5	6	7	8
EB	Left Thru Right Peds	P P P	P P		i	NB	Left Thru Right Peds	P P P	P P		
WB	Left Thru Right Peds		P P P			SB	Left Thru Right Peds		P P P		
NB	Right				ļ	EB	Right				
SB	Right					WB	Right				
Gree Yell All	ow	15.1 4.0 0.0	1.5 4.0 0.0		J			7.3 4.0 0.0	29.5 4.0 0.0		

Cycle Length: 69.4

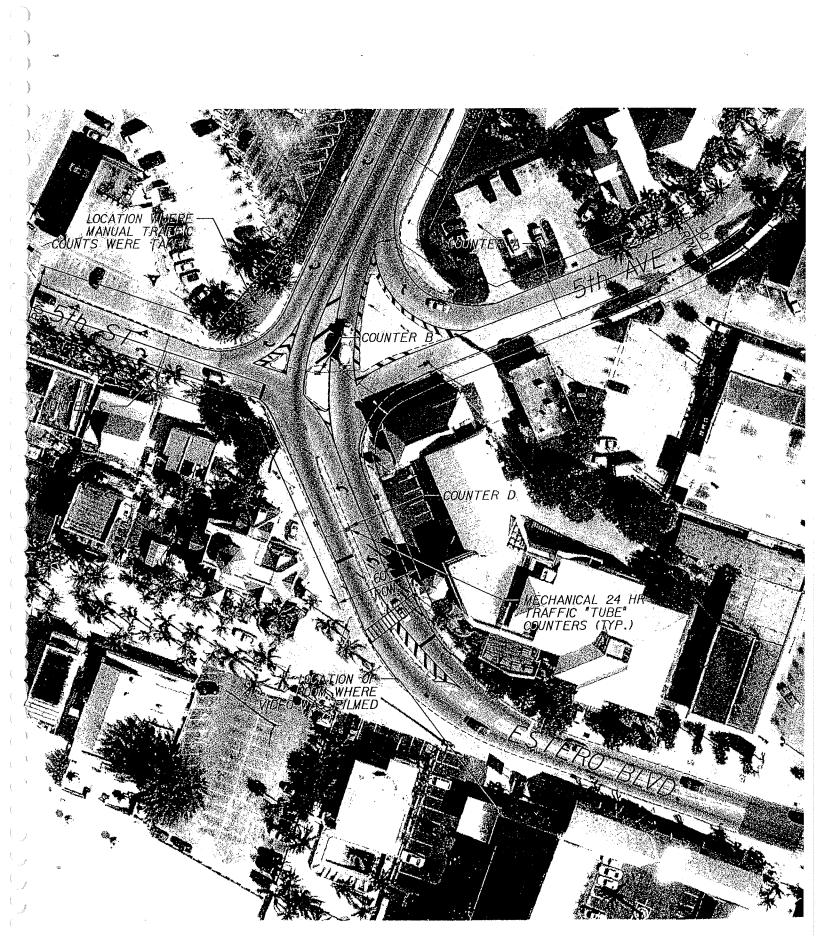
secs

VOLUME ADJUSTMENT WO	RKSHEET
----------------------	---------

Appr./ Movement	Mvt Volume	PHF	Flow Rate	No. Lanes	Lane Group	RTOR	Adjusted Flow Rate In Lane Grp	Prop. Left Turns	Prop. Right Turns
Eastbound									
Left	349	0.95	367	1	L		367		
Thru	22	0.95	23	1	T		23		
Right	201	0.95	212	1	R	0	212		
Westbound									
Left	23	0.95	24	1	L		24		
Thru	23	0.95	24	1	$^{\Upsilon}$		24		
Right	30	0.95	32	1	R	0	32		
Northboun	d								
Left	168	0.95	177	1	L		177		
Thru	841	0.95	885	1	\mathbf{T}		885		
Right	35	0.95	37	1	R	0	37		
Southboun	d								
Left	20	0.95	21	1	L		21		
Thru	715	0.95	753	1	\mathbf{T}		753		
Right	284	0.95	299	1	R	0	299		

^{*} Value entered by user.

	SATURATION FLOW ADJUSTMENT WORKSHEET											
Lan	r/ Ideal e Sat up Flow	f W	f HV	f G	f P	f BB	f A	f LU	f RT	f LT	Adj Sat Flow	
Eas L T R	1900 1900 1900 1900	1.000 1.000 1.000	0.980 0.980 0.980	1.000 1.000 1.000	1.000 1.000 1.000	1.000 1.000 1.000	Sec LT 0.90 0.90 0.90	Adj/L 1.00 1.00 1.00	IT Sat: 1.000 0.850	0.950 1.000	1593 1676 1425	
West L T R	1900 1900 1900 1900	1.000 1.000 1.000	0.980 0.980 0.980	1.000 1.000 1.000	1.000 1.000 1.000	1.000 1.000 1.000	Sec LT 0.90 0.90 0.90	Adj/L 1.00 1.00 1.00	T Sat: 1.000 0.850	1.000	1676 1425	
Nort L T R	1900 1900 1900 1900	1.000 1.000 1.000	0.980 0.980 0.980	1.000 1.000 1.000	1.000 1.000 1.000	1.000 1.000 1.000	Sec LT 0.90 0.90 0.90	Adj/L 1.00 1.00 1.00	T Sat: 1.000 0.850	0.950	1593 1676 1425	
Sout L T R	1900 1900 1900 1900	1.000 1.000 1.000	0.980 0.980 0.980	1.000 1.000 1.000	1.000 1.000 1.000	1.000 1.000 1.000	Sec LT 0.90 0.90 0.90	Adj/L 1.00 1.00 1.00	T Sat: 1.000 0.850	0.195	327 1676 1425	


- Ver: mal-

		CAP	ACITY ANALY	SIS WORK	SHEET		
		Adj	Adj Sat	Flow	Green	Lane Gr	oup
Appr/	Lane	Flow Rate	Flow Rate	Ratio	Ratio	Capacity	v/c
Mvmt	Group	(v)	(s)	(v/s)	(g/C)	(c)	Ratio
Eastbound	1						
Pri.							
Sec.							
Left	\mathbf{L}	367	1593	0.23	0.218	348	1.05
Thru	\mathbf{T}	23	1676	0.01	0.297	498	0.05
Right	R	212	1425	0.15	0.297	423	0.50
Westbound	l						
Pri.							
Sec.							
Left	L	24			0.021		
Thru	T	24	1676	0.01	0.021	36	0.67
Right	R	32	1425	0.02	0.021	30	1.07
Northboun	d						
Pri.							
Sec. Left	L	177	1500	0 11	0 105		4 0=
Thru	ъ Т	885	1593 1676	0.11	0.105	168	1.05
Right	R	37	1425	0.53 0.03	0.588	985	0.90
Southboun		37	1477	0.03	0.588	838	0.04
Pri.	u						
Sec.							
Left	L	21	327	0.06	0.425	139	0.15
Thru	T	753	1676	0.45	0.425	712	1.06
Right	R	299	1425	0.21	0.425	605	0.49
-							

Lost Time/Cycle, L = 0.00 sec $\frac{\text{Sum (v/s) critical}}{\text{Critical v/c(X)}} = 0.00$

Appr Lane		tios	Unf Del	LEVI Prog Adj	EL OF Lane Grp	ne Incremental Re			Lane G	roup	p Approach		
Grp	V/C	g/C	d1	Fact	Cap	k	d2	d3	Delay	LOS	Delay	LOS	
East	bound										-		
L	1.05	0.218	27.1	1.000	348	0.50	63.3	0.0	90.5	F			
T	0.05	0.297		1.000	498	0.50	0.2	0.0	17.6	В	64.4	E	
R	0.50	0.297	20.2	1.000	423	0.50	4.2	0.0	24.3	C			
West:	bound												
L		0.021		1.000		0.50		0.0					
T	0.67	0.021	33.7	1.000	36	0.50	68.6	0.0	102.3	F			
R	1.07	0.021	34.0	1.000	30	0.50	185.4	0.0	219.3	F			
Nort	hbound												
L	1.05	0.105	31.1	1.000	168	0.50	84.3	0.0	115.4	F			
T	0.90	0.588	12.5	1.000	985	0.50	12.7	0.0	25.2	C	39.1	D	
R	0.04	0.588	6.1	1.000	838	0.50	0.1	0.0	6.2	А			
Soutl	hbound												
L	0.15	0.425	12.3	1.000	139	0.50	2.3	0.0	14.6	В			
Τ	1.06	0.425	20.0	1.000	712	0.50	50.0	0.0	69.9	E	54.2	D	
R	0.49	0.425	14.5	1.000	605	0.50	2.9	0.0	17.4	В			
	Tr	itersec	rtion	Delay =		lsec/s	rob)	Tntor	coction	TOC			

(sec/veh) Intersection LOS =

Volume Report with Midnight Totals Page 1 ************************* ata File : D1217002.PRN tation : 000000000311 dentification : 000011169902 Interval : 15 minutes tart date : Dec 17, 99 Start time : 00:00 top date : Dec 17, 99 Stop time : 24:00 Westbound Volume for Lane 1 Ind Time 00 01 02 03 04 05 06 07 08 09 10 --------_ _ _ _ _ _ _ _ ____
 10
 1
 2
 3
 0
 2

 11
 1
 5
 2
 0
 1

 3
 2
 1
 1
 1
 4

 7
 0
 2
 1
 1
 2
 9 15 20 30 .7 20 19 32 34 .9 15 30 36 50 8 19 29 35 40 45 33 24 00 --- ---Ir Total 31 4 10 7 2 9 33 69 98 120 158 ______ ____ 12 13 14 15 16 17 ---------____ 22 26 27 20 37 31 --- (
 15
 40
 44
 54
 58
 50
 53
 22
 26
 23
 20
 30

 30
 30
 40
 41
 40
 37
 38
 27
 20
 18
 24
 19

 45
 45
 29
 37
 47
 67
 39
 37
 31
 20
 20
 14

 00
 44
 43
 42
 33
 46
 32
 29
 22
 21
 12
 16
 19 22 46 11 _ _ _ _ _ _ ____ ____ ____ --------____ ____ _ - - --Ir Total 159 156 174 178 200 162 115 99 82 76 98 lidnight Total : 2246 M peak hour begins: 10:15 AM peak volume: 160 Peak hour factor: 0.80 M peak hour begins: 16:30 PM peak volume: 204 Peak hour factor: 0.76 ************************* ec 17 Eastbound Volume for Lane 2 _______ nd Time 00 01 02 0.3 04 05 06 07 0.8 --------2 1 0 0 1 0 1 0 15 30 45 45 00 ____ -------1 0 1 r Total 4 1 3 1 6 7 12 13 14 16 17 18 19 20 15 23 ----____ ____ ____ ---- (____ _ _ _ _ 4 6 1 0 8 2 3 15 0 2 3 6 1 30 6 0 3 1 2 4 3 1 4 10 7 45 17 10 1 3 5 (5 0 6 wild introduced by the billion of the ----28 16 14 14 10 14 15 17 idnight Total : 240 M peak hour begins : 11:00 AM peak volume : M peak hour begins : 14:15 PM peak volume : Peak hour factor: 0.53
Peak hour factor: 0.43 ***************************

rata File : D1217002.PRN tation : 000000000311

dentification: 000011169902 Interval: 15 minutes

tart date : Dec 17, 99

top date : Dec 17, 99

ity/Town : ft. meyers beach county : lee

position : on 5th street Ave

`E	ec 17			•	Total	Volume	for Al	l Lane	s				
Ţ	nd Time	00	01	02	03	04	05	06	07	08	09	10	11
)	15 30 45 00	12 11 4 8	2 1 2 0	2 5 1 3	3 2 1 1	0 0 1 2	2 4 4 2	9 7 9 9	16 23 15 21	21 19 34 31	18 32 37 35	36 36 56 41	40 36 27 43
ł	Total	. 35.	5	11	7	3	12	34	75	105	122	169	146
r	d Time	12	13	14	15	16	17	18	19	20	21	22	23
Towns Towns Towns	15 30 45 00	44 31 53 49	50 40 31 43	57 43 54 48	62 41 57 34	50 41 74 49	60 44 40 36	26 32 40 31	27 26 31 25	26 21 27 22	22 28 25 18	33 22 15 21	23 25 51 14
k	Total	177 	164	202	194	214	180	129	109	96	93	91	113

idnight Total : 2486

)

.

)

)

)

To the same

Volume Report with Midnight Totals Page 1 ******************************* ata File : D1217003.PRN ;tation : 000000000312 dentification : 000011169903 Interval : 15 minutes Start date : Dec 17, 99 Start time : 00:00 Stop date : Dec 17, 99 Stop time : 24:00

County

: lee

ocation : on san carlos blvd.

: ft. meyers beach

lity/Town

ec 17			N	orthbo	und Vo	lume f	or Lan	e 1				
Ind Time	00	01	02	03	04	. 05	06	07	08	09	10	11
15 30 45 00	22 17 17 14	11 15 12 15	20 . 11 . 12 . 9	9 11 5 6	7 6 7 9	12 15 22 25	31 52 73 80	97 95 110 109	128 122 129 142	142 140 133 158	138 161 170 162	160 149 143 153
Ir Total	70	53	52	31	29	74	236	411	521	573	631	605
Ind Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	152 154 145 134	141 140 133 156	146 147 139 122	164 176 199 172	173 151 199 147	163 159 152 164	141 126 129 114	120 116 89 69	89 78 86 68	77 71 71 72	61 84 91 63	54 39 77 64
Ir Total	585	570	554 	711	670	638	510	394	321	291 	299 	234

lidnight Total : 9063

M peak≀hour				$\mathbf{M}\mathbf{A}$	peak	volume	:.	653	Peak	hour	factor	:	0.96
M peak hour	begins	:	15:15	PM	peak	volume	:	720	Peak	hour	factor	:	0.90

ec 17			S	outhbo	und Vo	lume f	or Lan	e 2				
Ind Time	00	01	02	03	04	05	06	07	08	09	10	11
15 30 45	22 19 16	15 10 9	9 6 6	6 5 5	2 6 10	11 9 18	38 63 95	143 172 193	90 124 118	128 56 135	108 126 145	143 138 134
00 Ir Total	22 79	13 47	3 24	3 19	7 25	18 56	166 362	173 681	149 481	141 460	128 507	123 538
nd Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	157 142 132 158	171 136 129 148	121 140 153 186	179 170 178 170	148 161 172 160	138 163 147 157	156 139 139 114	111 130 142 109	121 120 120 94	85 99 89 72	75 99 88 90	77 62 56 33
r Total	589	584	600	697	641	605	548	492	455	345	352	228

idnight Total : 9415

M peak hour begins: 07:00 AM peak volume: 681 Peak hour factor: 0.88 M peak hour begins: 14:45 PM peak volume: 713 Peak hour factor: 0.96 M restable restabl

3200 Bailey Lane at Airport Road, Naples FL 33942

Volume Report with Midnight Totals

Page 2

ata File : D1217003.PRN : 000000000312

dentification : 000011169903 Interval : 15 minutes

tart date : Dec 17, 99 Start time : 00:00 top date : Dec 17, 99 Stop time : 24:00 ity/Town : ft. meyers beach : lee County

ocation : on san carlos blvd.

ec 17				Total	Volume	for A	ll Lan	ies				
nd Time	00	01	02	03	04	05	06	07	08	09	10	11
) 15 30) 45) .0.0.	44 36 33 36.	26 25 21 . 28	29 17 18 12	15 16 10 9	9 12 17 16	23 24 40 . 43	69 115 168 246	240 267 303 282	218 246 247 291	270 196 268 299	246 287 315 290	303 287 277 276.
r Total	149	100	76	50	54	130	598	1092	1002	1033	1138	1143
nd Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	309 296 277 292	312 276 262 304	267 287 292 308	343 346 377 342	321 312 371 307	301 322 299 321	297 265 268 228	231 246 231 178	210 198 206 162	162 170 160 144	136 183 179 153	131 101 133 97
r Total	1174	1154	1154	1408	1311	1243	1058	886	776	636	651	462

idnight Total : 18478

M peak hour begins: 10:15 AM peak volume: 1195 Peak hour factor: 0.95 M peak hour begins: 15:00 PM peak volume: 1408 Peak hour factor: 0.93

Wilson, Miller, Barton & Peek

: estero blvd. 5 TH ST.

3200 Bailey Lane at Airport Road, Naples FL 33942 Volume Report with Midnight Totals Page Data File : D1217001.PRN : 000000000310 3tation [dentification : 000012169901 Interval : 15 minutes Start time : 00:00 Stop time : 24:00 City/Town : ft. myers beach County

Dec 17				Eastbo	und Vol	ume f	or Lan	e 1				
3nd Time	00	01	02	03	04	05	06	07	08	09	10	11
15 30 45 00	5 10 3 6	0 1 5 0	4 2 7 3	2 2 2 2 0	1 0 1	1 1 2 6	2 3 8 8	13 6 8 17	12 10 16 22	13 31 23 28	21 24 17	24 25 18 20
Ir Total	24	6	16	6	3	10	21	44	60	95	88	87
End Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	19 26 39 31	39 31 27 30	35 21 32 31	44 33 23 29	17 25 35 45	28 22 24 24	20 27 30 26	32 21 27 43	23 30 27 34	32 31 27 28	28 35 25 26	22 25 34 12
Ir Total	115	127	119	129	122	98	103	123	114	118	114	93

4idnight Total	: 1835				
AM peak hour begins	: 09:15	AM peak volume	: 103	Peak hour fact	or: 0.83
PM peak hour begins	: 12:30	PM peak volume	: 140 I	Peak hour fact	or: 0.90
******	******	*****	*****	*****	*****
Dec 17	Westh	bound Volume for	Lane 2		

Jec 17	· 			westbo	und Vo	lume f	or Ean	.e 2				
End Time	00	01	02	03	04	05	06	07	08	09	10	11
15 30 45	12 7 3 7	9 5 3 5	5 4 3 6	4 1 1	0 1 1 2	2 1 5	7 7 16 22	23 20 26 32	34 37 45 62	66 49 66 61	51 55 77 61	44 63 77 57
Ir Total	29	22	18	7	4	17	52	101	178	242	244	241
Ind Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	62 78 72 81	59 60 73 73	64 61 74 71	68 48 62 52	73 87 65 69	96 74 89 61	65 69 56 63	64 58 74 55	63 46 54 39	56 54 46 65	30 35 46 29	41 28 46 18
Ir Total	293	265	270	230	294	320	253	251	202	221	140	133

lidnight Total : 4027

Socation

M peak hour begins: 11:30 AM peak volume: 274 Peak hour factor: 0.88 M peak hour begins: 16:45 PM peak volume: 328 Peak hour factor: 0.85 Peak hour factor: 0.85 ***** ****************

3200 Bailey Lane at Airport Road, Naples FL 33942 Volume Report with Midnight Totals

Page

: D1217001.PRN

Interval

: 15 minutes

tation: 000000000310 dentification : 000012169901

tart date : Dec 17, 99 Start time : 00:00 : Dec 17, 99 top date Stop time : 24:00

ec 17				Total	Volume	for Al	l Lan	es				
nd Time	00	01	02	03	04	05	06	07	08	09	10	11
) 15 30 45) 00	17 17 6 13	9 6 8 · 5	9 6 10 9	6 3 3 1	1 1 2 3	3 2 7 15	9 10 24 30	36 26 34 49	46 47 61 84	79 80 89 89	72 79 94 87	68 88 95 77
r Total	53	28	34	13	7	27	73	145	238	337	332	328
nd Time.	12.	. 13	14	15	16	. 17	18	19	20	21	22	23.
) 15 30 45) 00	81 104 111 112	98 91 100 103	99 82 106 102	112 81 85 81	90 112 100 114	124 96 113 85	85 96 86 89	96 79 101 98	86 76 81 73	88 85 73 93	58 70 71 55	63 53 80 30
r Total	408	392	389	359	416	418	356	374	316	339	254	226

idnight Total

M peak hour begins: 11:30 AM peak volume: 357 Peak hour factor: 0.80 M peak hour begins: 16:15 PM peak volume: 450 Peak hour factor: 0.91

		3200	Bailey Volum					Naples Total		942	Pa	ge 1 .
*****	*****	*****	*****	****	*****	****	*****	*****	*****	*****	*****	****
Data File Station Identific		: 000	17004.P 0000003 0111699	13			Inter	val	: 15	minutes		
Start dat			17, 99					time	: 00:			-jr
Stop dat City/Town			17, 99 . meyer		ah.		Stop Count	time	: 24: : lee			/ b
Location			. meyer estero		11		Counc	У	. 166			1
*****	* * * * * * *								*****	*****	****	****
Dec 17			No	rthboi	and Vo	lume :	for La	ne 1				
End Time	00	01	02	03	04	05	06 	07	08	09	10	11 1
15	5	3	4	2	0	2	6	17	12	23	18	16
30	5	5	. 3	2	1	3	5	•		21	28	15
45	2	0	4	2	2	2	8	5		20	22	43,
00	7	4	4	1	2	4	13	12	13	17	22	19 🗲
Hr Total	19	12	15	7	5	11	32	40	49	81	90	73:
End Time	12	13	14	15	16	17	18	19	20	21	22	23
15	15	16	24	17	23	25	21	25	28	23	21	23 4
30	96	17	16	11	28	28	24				20	22
45	78	22	23	27	20	22	20				28	31
00	28	25	25	25	20	16	23	26			18	$\frac{31}{14}$ by
Hr Total	217	80	88	80	91	91	88	109	92	127	 87	90,
Midnight			1674									
			: 1674 : 11:30	7. 1	A nesk	wo lu	ma .	152	Poak 1	hour fo	ator.	0.40
AM peak h	nour be	egins	: 12:15	Pi	1 peak 1 peak	volu	ne :	133 218	Peak	hour fa	ctor :	0.40
*****	*****	*****	*****	****	*****	****	*****	*****	****	*****	****	****
Dec 17			So [.]	uthboı 	ind Vo	lume :	for La	ne 2			L	New York
End Time	00	01	02	03	04	05	06	07	08	09	10	11
15	25	15	13	8	2	9	21 42	90180	125249	306411	139	166
30	29	11	9	6	6					158316	152	1,74
45	19	14	12	7	11	20	13 145	142284	162324	83 166	177	159
00	28	13	3	4	7	24	117233	186371	Z334.66°	87173	157	153
Hr Total	101	53	37	25	26	64	156 156	1016	1348	1066 -534	625	652
End Time	12	13	14	15	16	17	18	19	20	21	22	23
15	181	216	164	232	172	183	1.83	150	153	126	104	101
30	178	170	168	222	189	192	173	147	157	132	139	87
45	183	166	194	206	204	178	171	178	,155	125	119	95
00	192	185	220	209	202	187	145	153	128	102	117	45
Hr Total	734	737	746	869	767	740	672	628	593	485	479	328
Midnight	Total		: 13301	11,33	5							
AM peak h	our be	gins :	: 08:30	$\mathbf{A}\mathbf{M}$	l peak	volum	ne : 15	517	Peak h	nour fac	ctor :	0.81
PM peak h	::::::::::::::::::::::::::::::::::::::	gins :	: 14:45 ******	PM *****	peak *****	volun *****	ne : 8	380 *****	Peak } ******	nour fac	ctor :	0.95

Page

Volume Report with Midnight Totals

: D1217004.PRN cation : 000000000313

dentification : 000011169904 Interval : 15 minutes tart date : Dec 17, 99 Start time : 00:00 top date : Dec 17, 99 Stop time : 24:00

: ft. meyers beach ity/Town County

pocation : on estero blvd. *******************

ec 17				Total	Volume	for A	ll Lan	es				
nd Time	00	01	02	03	04	05	06	07	08	09	10	11
) 15 30 45) 00	30 34 21 35	18 16 14 17	17 12 16 7	10 8 9	2 7 13 9	11 14 22 28	48 95 153 246	197 187 289 383	261 317 340 479	434 337 186 190	157 180 199 179	182 189 182 172
r Total	120	65	52	32	31	75	542	1056	1397	1147	715	725
nd Time	12	13	14	15	16	17	18	19	20	21	22	23
) 15 30 45) 00	196 274 261 220	232 187 188 210	188 184 217 245	249 233 233 234	195 217 224 222	208 220 200 203	204 197 191 168	175 173 210 179	181 176 174 154	149 165 159 139	125 159 147 135	124 109 126 59
r Total	951	817	834	949	858	831	760	737	685	612	566	418

idnight Total : 14975

Wilson, Miller, Barton & Peek

3200 Bailey Lane at Airport Road, Naples FL 33942

Volume Report with Midnight Totals Page ************************* Data File : D1218002.PRN Station : 000000000311 Identification: 000011169902 Interval : 15 minutes Start date : Dec 18, 99 Start time : 00:00 Westbound Volume for Lane 1 6 2 15 . 12 26 00 6 2 3 2 1 3 3€ ____ _ - - -----Hr Total 35 18 17 6 3 End Time ____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____ ____ 28 29 40 22 24 31 28 21 21 0.0 _____ ____ _ _ _ _ ----Hr Total 127 142 165 120 155 111 106 88 81 Midnight Total : 2061 AM peak hour begins: 09:45 AM peak volume: 163 Peak hour factor: 0.93 PM peak hour begins: 14:00 PM peak volume: 165 Peak hour factor: 0.82 ****************************** Dec 18 Eastbound Volume for Lane 2 End Time 00 01 02 03 08 09 _ _ _ _ 0 2 0 0 2 -----_ - - -----_ _ _ _ 1 1 6 2 5 2 3 6 3 5 4 4 2 4 00 4 3 ------------17 16 Midnight Total : 224 AM peak hour begins: 09:45 AM peak volume: 23 Peak hour factor: 0.64 PM peak hour begins: 17:30 PM peak volume: 23 Peak hour factor: 0.64 **************************

Volume Report with Midnight Totals Page 2

data File : D1218002.PRN tation : 00000000311

dentification: 000011169902 Interval: 15 minutes

 tart date
 : Dec 18, 99
 Start time
 : 00:00

 top date
 : Dec 18, 99
 Stop time
 : 24:00

 ity/Town
 : ft. meyers beach
 County
 : lee

ocation : on 5th street AVE

ec 18				Total	Volume	for Al	l Lan	es				
hd Time	00	01	02	03	04	05	06	07	08	09	10	11
15 30 45 00	15 13 8 7	11 6 2 2	7 8 8 3	2 1 2 2	1 2 0 1	1 4 5 3	6 8 8	11 14 17	19 16 35 27	35 41 38 48	47 45 46 39	39 49 36 40
r Total	43	21	26	7	4	13	31	54	97	162	177	164
hd Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	41 28 36 32	37 46 37 32	54 39 43 41	36 39 33 24	41 32 67 28	33 23 33 40	36 32 24 31	19 28 31 26	34 24 11 23	20 20 16 24	20 20 20 19	17 15 58 23
r Total	137	152	177	132	168	129	123	104	92	80	79	113

idnight Total : 2285

M peak hour begins: 09:45 AM peak volume: 186 Peak hour factor: 0.97 M peak hour begins: 14:00 PM peak volume: 177 Peak hour factor: 0.82

Sand Sand

Jellissa_{n,} Jestin

patient, patient,

)))

The morning of the contract of

Wilson, Miller, Barton & Peek

3200 Bailey Lane at Airport Road, Naples FL 33942

hata File : D1218003.PRN
tation : 000000000312

dentification: 000011169903 Interval: 15 minutes

ocation : on san carlos blvd.

ec 18			N	orthbo	und Vo	lume f	or Lan	e 1				
Ind Time	00	01	02	03	04	05	06	07	08	09	10	11
15 30 45 00	47 34 36 35	47 26 28 24	36 22 25 24	14 13 10 2	15 9 7 10	12 11 16 16	33 22 30 39	56 49 69 71	103 90 89 119	140 134 130 156	166 163 160 153	164 165 175 133
Ir Total	152	125	107	39	41	55	124	245	401	560	642	637
Ind Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	171 139 142 142	145 115 127 130	131 126 118 117	115 138 131 138	122 119 119 118	118 119 99 98	107 93 93 91	86 89 87 71	61 62 68 73	71 42 72 74	76 85 52 71	63 57 61 55
Ir Total	594	517	492	522	478	434	384	333	264	259	284	236

Midnight Total : 7925

M peak hour begins: 10:45 AM peak volume: 657 Peak hour factor: 0.94 M peak hour begins: 12:00 PM peak volume: 594 Peak hour factor: 0.87

ec 18 Southbound Volume for Lane 2												
Ind Time	00	01	02	03	04	05	06	07	08	09	10	11
15 30 45	48 46 40 24	24 23 23 23	21 13 19 15	7 11 2 7	15 4 5	9 5 10 13	23 28 41 68	47 68 84 87	61 97 87 81	88 86 90 120	107 107 130 116	109 137 122 138
Ir Total	158	92	68	27 	33	37	160	286	326	384	460	506
ind Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	161 154 129 143	157 136 136 164	138 148 127 161	138 140 141 141	123 120 134 116	115 132 113 108	115 115 105 93	88 99 90 93	80 88 93 84	87 91 82 76	98 77 71 79	79 62 82 39
r Total	587	593	574	560	493	468	428	370	345	336	325	262

lidnight Total : 7878

Wilson, Miller, Barton & Peek

3200 Bailey Lane at Airport Road, Naples FL 33942

Volume Report with Midnight Totals Page 2 ****************************** : D1218003.PRN tation : 000000000312 dentification : 000011169903 Interval : 15 minutes tart date : Dec 18, 99 Start time : 00:00 top date : Dec 18, 99
ity/Town : ft. meyers beach
pocation : on san carlos blvd. Stop time : 24:00 County : lee ***************************** Total Volume for All Lanes }-----nd Time 00 01 02 03 04 05 06 07 08 09 10 11 _____ ---- ---- ---- ---- ----
 15
 95
 71
 57
 21
 30
 21
 56
 103
 164
 228
 273
 273

 30
 80
 49
 35
 24
 13
 16
 50
 117
 187
 220
 270
 302

 45
 76
 51
 44
 12
 12
 26
 71
 153
 176
 220
 290
 297

 00
 59
 46
 39
 9
 19
 29
 107
 158
 200
 276
 269
 271
 00 -------r Total 310 217 175 66 74 92 284 531 727 944 1102 1143 }----nd Time 12 13 14 15 16 17 18 19 20 21 22 ____ _ _ _ _ ----_ _ _ _ --------____ _ _ _ _ 332 302 269 253 245 233 222 174 141 158 174 142
 293
 251
 274
 278
 239
 251
 208
 188
 150
 133
 162
 119

 271
 263
 245
 272
 253
 212
 198
 177
 161
 154
 123
 143

 285
 294
 278
 279
 234
 206
 184
 164
 157
 150
 150
 94
 30 45 00 ----- ----____ ---- ----____ ____ _ _ _ _

idnight Total : 15803

r Total 1181 1110 1066 1082 971 902 812 703 609

t never to the second

)

)

٠,

Volume Report with Midnight Totals Page)ata File : D1218001.PRN 3tation : 000000000310 Identification: 000012169901 Interval : 15 minutes 3tart date : Dec 18, 99 Start time : 00:00 3top date : Dec 18, 99 Stop time : 24:00 City/Town Location : ft. myers beach County : lee : estero blvd. 5TH ST. Eastbound Volume for Lane 1 01 02 ---____ _ _ _ _ 3.0 0 ----_____ ___ ----____ _ _ _ _ _ _ _ _ - - - -----_ _ _ _ Ind Time _____ --------____ 37 27 _ _ _ _ - - -- -- ------------Ir Total 113 131 lidnight Total M peak hour begins: 10:30 AM peak volume: 113 Peak hour factor: 0.78 M peak hour begins: 13:15 PM peak volume: 144 Peak hour factor: 0.90 M peak hour begins : 10:30 ************************ ec 18 Westbound Volume for Lane 2 ind Time 00 _ _ _ _ _ _ _ _ 26 . . 3 · . 5 ~9 19 2 3 ----- - r Total nd Time _____ ____ _ _ _ _ ---_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ r Total 286 180 172 idnight Total : 3709 AM peak volume : M peak hour begins: 10:00 Peak hour factor: 0.82 M peak hour begins: 12:00 PM peak volume : Peak hour factor: 0.93

Volume Report with Midnight Totals

Page

: D1218001.PRN tation : 000000000310 dentification : 000012169901 Interval : 15 minutes tart date : Dec 18, 99 Start time : 00:00 top-date : Dec 18, 99 Stop time : 24:00 ity/Town : ft. myers beach pocation : estero blvd: 574 ST. County : lee Total Volume for All Lanes nd Time 00 01 02 03 04 05 06 07 08 09 10 ----____ ----
 15
 42
 16
 12
 8
 6
 1
 10
 26
 42
 76
 85

 30
 28
 20
 10
 3
 12
 3
 14
 21
 42
 66
 92

 45
 26
 9
 12
 5
 2
 7
 13
 31
 57
 61
 107

 00
 25
 22
 6
 4
 1
 10
 17
 35
 83
 80
 75
 81 72 4.5 81 0.0 _ _ _ _ År Total 121 67 40 20 21 21 54 113 224 283 359 }-----nd Time 12 13 14 15 16 17 18 19 20 21 22 23 ---- ---- ---- ---- ----~ - - -_ - - -
 15
 103
 79
 110
 77
 90
 77
 65
 72
 66
 64
 53

 30
 96
 85
 100
 77
 76
 89
 72
 63
 89
 81
 81

 45
 98
 92
 88
 84
 93
 77
 78
 73
 54
 52
 78

 00
 102
 113
 89
 87
 87
 85
 62
 56
 76
 56
 53
 ____ ____ 71 62 45 86 0.0 60 ____ r Total 399 369 387 325 346 328 277 264 285 253 265 279

idnight Total : 5420

M peak hour begins: 11:30 AM peak volume: 366 Peak hour factor: 0.89 M peak hour begins: 13:30 PM peak volume: 415 Peak hour factor: 0.92 ******************************

Volume Report with Midnight Totals Data File : D1218004.PRN Station : 000000000313 Identification: 000011169904 Interval : 15 minutes Start date : Dec 18, 99 Start time : 00:00 Stop date : Dec 18, 99 Stop time : 24:00 City/Town : ft. meyers beach County Location : on estero blvd. ******************************* Northbound Volume for Lane 1 End Time 00 01 04 05 ----____ _ _ _ _ _ _ _ _ ____ _ _ _ _ _ _ _ ____ _ -- -- -Ir Total Ind Time _ _ _ _ ----_ _ _ _ _ _ _ 19 0.0 ----_ _ _ _ _ _ _ _ --------____ ir Total 87 91 77 68 Midnight Total : 1333 AM peak hour begins: 11:30 AM peak volume: 86 Peak hour factor: 0.83 PM peak hour begins: 13:45 PM peak volume: 94 Peak hour factor: 0.81 Southbound Volume for Lane 2 Ind Time 00 01 02 0.8 ---------_ _ _ _ --------_ _ _ _ Ir Total 201 Ind Time 12 ____ ____ 30 184 149 158 1.04 ----_ _ _ _ ____ _ _ - -Ir Total 706 lidnight Total : 9937 M peak hour begins: 11:30 AM peak volume: 695 Peak hour factor: 0.90 M peak hour begins: 13:30 PM peak volume: 767 Peak hour factor: 0.92

3200 Bailey Lane at Airport Road, Naples FL 33942

Page 2 Volume Report with Midnight Totals

: D1218004.PRN ta File : 000000000313 ation

ientification: 000011169904

: 15 minutes Interval Start time : 00:00 : Dec 18, 99 art date

: 24:00 Stop time op date : Dec 18, 99 County : lee lty/Town : ft. meyers beach

cation : on estero blvd. *****************************

ᢤc 18				Total	Volume	for All	Lane	s 				
jd-Time	00	01	02	03	04	05	06	07	08	09	10	11
) 15) 30 ,45) 00	83 70 . 53 . 44	34 43 30 29	27 20 30 19	14 14 5 9	21 12 6 10	10 8 16 18	28 39 48 77	69 84 98 100	80 123 116 129	131 125 122 161	157 157 183 159	171 181 164 192
r Total	250	136	96	42	49	52	192	351	448	539	656 	708
nd Time	12	13	14	15	16	17	18	19	20	21	22	23
) 15) 30 45) 00	219 206 179 189	202 198 190 237	217 216 181 230	179 201 201 202	173 163 185 171	154 178 148 151	165 171 148 130	129 141 133 132	124 151 136 125	131 138 121 119	132 138 123 112	130 119 153 80
r Total	793	827	844	783	692	631	614	535	536	509	505	482

: 11270 idnight Total

AM peak volume :
PM peak volume : Peak hour factor: 0.89 M peak hour begins : 11:30 781 860

Peak hour factor: 0.91 M peak hour begins : 13:30 ****************************

3200 Bailey Lane at Airport Road, Naples FL 33942 Volume Report with Midnight Totals Page 1 ***************************** Data File : D1219002.PRN Station : 000000000311 Identification: 000011169902 Interval : 15 minutes Start date : Dec 19, 99 Start time : 00:00 Stop date : Dec 19, 99 Stop time : 24:00 City/Town : ft. meyers beach cocation : on 5th street AVE County : lee ***************************** Westbound Volume for Lane 1 End Time 00 01 02 03 04 06 05 0.8 09 10 ----_ _ _ _ _ _ _ _ _ - - -
 15
 11
 10
 9
 4
 1
 2
 4
 4
 9

 30
 2
 7
 4
 3
 0
 0
 4
 7
 16

 45
 4
 2
 6
 2
 0
 0
 5
 9
 15

 00
 5
 5
 2
 5
 2
 2
 5
 18
 23
 23 32 33 28 35 29 37 26 30 35 ------_ _ _ _ ____ ----____ Hr Total 22 24 21 14 3 4 18 63 114 -----End Time 13 17 20 21 _ _ _ _ ____ --------_ _ _ _
 15
 46
 34
 42
 61
 74
 53
 56
 29
 23

 30
 40
 32
 49
 50
 58
 54
 53
 31
 25

 45
 40
 34
 54
 69
 93
 65
 40
 23
 22

 00
 31
 51
 52
 63
 66
 73
 43
 38
 32
 22 21 11 22 26 21 15 32 23 ----____ ____ ---------------- ----____ ----Ir Total 157 151 197 243 291 245 192 121 102 87 Midnight Total : 2540 AM peak hour begins: 11:30 AM peak volume: 156 Peak hour factor: 0.85 PM peak hour begins: 16:00 PM peak volume: 291 Peak hour factor: 0.78 Eastbound Volume for Lane 2 01 02 04 03 05 06 08 09 10 11 --------0 0 0 0 0 1 0 0 0 30 1 0 0
 30
 1
 0
 0
 0
 2

 45
 0
 0
 1
 0
 0

 00
 0
 0
 0
 2
 0
 $egin{array}{ccc} 0 & & 1 \\ 0 & & 0 \\ 0 & & 0 \\ \end{array}$ 0 3 0 0 1 4 5 0 0 1 0 ____ Ir Total 7 1 1 -3 13 14 15 16 17 18 19 20 21 ____ --------____ 14 9 3 8 3 15 2 5 3 3 3 8 4 6 30 2 2 3 45 3 10 4 0 0 5 4 5 1 7 1 2 5 0 --- ----_ _ _ _ r Total 17 23 13 31 23 lidnight Total : 240

M peak hour begins: 11:00 AM peak volume: 15 Peak hour factor: 0.75 M peak hour begins: 14:45 PM peak volume: 31 Peak hour factor: 0.55 ***************************

3200 Bailey Lane at Airport Road, Naples FL 33942

Volume Report with Midnight Totals Page 2

tation : D1219002.PRN : 000000000311

dentification: 000011169902 Interval: 15 minutes

tart date : Dec 19, 99 Start time : 00:00 top date : Dec 19, 99 Stop time : 24:00 ity/Town : ft. meyers beach County : lee

ec 19				Total	Volume	for Al	l Lane	S				
nd Time	00	01	02	03	04	05	06	07	08	09	10	11
) 15 30 45) 00	17 3 4 5	11 7 2 5	9 4 7 2	4 3 2 7	1 2 0 2	2 0 0 2	4 4 5 5	4 8 9 18	10 18 16 23	24 28 38 27	33 37 30 30	36 32 40 39
r Total	29	25	22	16	5	4	18	39	67	117	130	147
nd Time	12	13	14	15	16	17	18	19	20	21	22	23
) 15) 30) 45) 00	49 42 44 39	39 36 40 59	45 51 57 57	75 53 78 68	83 66 95 70	55 59 75 78	59 55 49 50	32 33 27 39	26 26 26 34	29 25 26 26	28 23 26 16	24 14 32 23
r Total	174	174	210	274	314	267	213	131	112	106	93	93

idnight Total : 2780

M peak hour begins : 11:30 AM peak volume : 170 Peak hour factor : 0.87 peak hour begins : 16:00 PM peak volume : 314 Peak hour factor : 0.83

)

.....

Volume Report with Midnight Totals Data File : D1219003.PRN Station : 000000000312 Identification: 000011169903 Interval : 15 minutes Start date : Dec 19, 99 Start time : 00:00 Stop date : Dec 19, 99 City/Town : ft. meyers beach
Location : on san carlos blvd. Stop time : 24:00 County : lee Northbound Volume for Lane 1 End Time 05 06 ____ -------------------- - - -____ 11 . 13 9 ` _____ - - - --____ ____ ----_ _ _ _ -------Hr Total 155 27 41 End Time ------ - - -_ _ _ _ ----_ _ _ _ ~ - ~ ---------_ _ _ _ ____ Hr Total 542 514 525 604 639 649 546 384 Midnight Total : 7810 AM peak hour begins: 11:30 AM peak volume: 600 Peak hour factor: 0.92 PM peak hour begins: 17:00 PM peak volume: 649 Peak hour factor: 0.94 Southbound Volume for Lane 2 3nd Time 00 01 02 --------_ _ _ _ 4 21 3.8 _ _ _ _ ------------Ir Total 171 _ _ _ _ _____ _ _ _ _ _ 23 : ____ --------63 (88 0.0 144 140 .97 ----------____ ----____ ____ ---r Total 682 411 377 idnight Total : 8305 M peak hour begins : 11:00 AM peak volume : 586 Peak hour factor : 0.95 M peak hour begins : 12:15 PM peak volume : 734 Peak hour factor : 0.91 *************************

3200 Bailey Lane at Airport Road, Naples FL 33942

Volume Report with Midnight Totals Page *********************** nta File : D1219003.PRN tation : 000000000312 Interval : 15 minutes dentification : 000011169903 art date : Dec 19, 99 Start time : 00:00 top date : Dec 19, 99
lty/Town : ft mevers Stop time : 24:00 lty/Town : ft. meyers beach
pcation : on san carlos blvd. County : lee **************************** Total Volume for All Lanes }----nd Time 00 01 02 03 04 05 06 07 08 09 1----____ ____ ____ ----____ ----____
 105
 75
 37
 23
 15
 20
 32
 57
 132
 230
 236

 86
 45
 49
 17
 14
 17
 30
 88
 126
 212
 267

 82
 39
 24
 14
 10
 23
 40
 118
 133
 206
 243

 53
 44
 25
 21
 16
 21
 56
 111
 201
 189
 284
 105 75 86 30 276 45 283 53 00 311 . நாகுதுகுரையை, சந்தத்தி, நித்தத், இதுக்கு ____ ____ _____ Å Total 326 203 135 75 55 81 158 374 592 837 1030 }----nd Time 12 13 14 15 16 17 18 19 20 21 ----) 15 297 327 288 327 294 319 256 222 149 152 152 107 264 281 324 320 262 192 168 294 276 30 151 116 126 45 296 275 292 282 306 322 233 187 157 143 95 90 00

idnight Total : 16115

M peak hour begins : 11:30 AM peak volume : 1185 Peak hour factor : 0.95 Peak hour begins : 17:00 PM peak volume : 1273 Peak hour factor : 0.99

Total 1224 1168 1157 1205 1215 1273 957 761 626 611 464

337 290 313 315 291 312 206 160 152 165 101

idnight Total : 4851

M peak hour begins : 11:00 M peak hour begins : 11:00 AM peak volume : 362 Peak hour factor : 0.85 M peak hour begins : 14:15 PM peak volume : 452 Peak hour factor : 0.76 ******************************

Volume Report with Midnight Totals

Page

: D1219001.PRN tation : 00000000310 dentification : 000012169901

Interval : 15 minutes tart date : Dec 19, 99 Start time : 00:00 top date : Dec 19, 99 Stop time : 24:00 ity/Town : ft. myers beach : lee County

postion : estero blvd. 57H ST.

ec 19				Total	Volume	for All	l Lane	es				
nd Time	00	01	02	03	04	05	06	07	08	09	10	11
) 15 30) 45) 00	34 33 17 17	18 21 10 10	15 17 9 3	6 3 8 2	7 3 5 4	1 8 6 12	6 14 7 17	17 21 28 45	47 35 53 72	75 75 78 82	77 113 103 90	111 92 135 128
r Total	101	59	44	19	19	27	44	111	207	310	383	466
nd Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	112 82 150. 119	112 143 141 138	102 147 194 151	132 120 131 146	135 158 134 149	156 152 152 164	104 107 104 100	91 77 91 86	88 90 101 103	99 77 84 56	58 52 60 58	65 36 51. 37
la Total	463	534	594	529	576	624	415	345	382	316	228	189

idnight Total : 6985

peak hour begins: 11:15

AM peak volume: 467

Peak hour factor: 0.86

Peak hour begins: 14:15

PM peak volume: 624

Peak hour factor: 0.80 ************************

Volume Report with Midnight Totals Page

Data File : D1219004.PRN Station : 00000000313

[dentification : 000011169904 Interval : 15 minutes

: Dec 19, 99 Start date Start time : 00:00 3top date : Dec 19, 99 Stop time : 24:00 City/Town : ft. meyers beach County : lee

Location : on estero blvd. ******************************

Dec 19			N	orthbo	und Vo	lume fo	or Lane	e 1				
End Time	00	01	02	03	04	05	0.6	07	08	09	10	11
15 30 45 00	12 14 10 3	6 7 2 4	7 . 10 . 5 . 2	4 0 1 0	3 1 1 2	1 0 3 2	1 2 6 4	2 3 1 8	15 3 12 24	13 11 17 20	12 27 20 24	21 25 20 30
Ir Total	39	19	24	5	7	6	13	14	54	61	83	96
End Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	21 16 30 23	29 20 36 29	24 32 22 29	35 29 34 34	34 35 32 30	39 27 44 32	26 19 26 27	32 17 25 22	19 21 45 21	40 25 21 21	18 14 16 25	20 15 16
Ir Total	90	114	107	132	131	142 	98	96	106	107	73	62

Midnight Total : 1679

₩ peak hour begins : 11:00 AM peak volume : 96 Peak hour factor: 0.80 PM peak hour begins: 17:00 PM peak volume: 142 Peak hour factor: 0.81

Dec 19			S	outhbo	und Vo	lume f	or Lan	e 2				
3nd Time	00	01	02	03	04	05	06	07	08	09	10	11
15 30 45 00	65 54 54 37	42 31 28 22	20 32 17 14	11 6 11 11	9 9 10 10	7 8 16 18	18 15 24 35	32 66 95 93	77 62 89 117	152 124 121 120	154 164 152 167	170 186 166 175
Ir Total	210	123	83	39	38	49	92	286	345	517	637	697
Ind Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	177 158 210 216	218 193 195 200	186 187 210 223	203 168 185 197	175 217 203 194	199 205 214 205	163 153 129 128	136 137 136 110	120 136 119 136	127 120 115 105	100 79 77 78	93 88 84 74
Ir Total	761	806	806	753	789	823	573	519	511	467	334	339

lidnight Total : 10597

M peak hour begins : 11:15 AM peak volume : 704 Peak hour factor: 0.95 'M peak hour begins : 12:30 PM peak volume : 837 Peak hour factor: 0.96 **************************

3200 Bailey Lane at Airport Road, Naples FL 33942 Volume Report with Midnight Totals Page ata File : D1219004.PRN : 000000000313 : 000000000313 dentification : 000011169904 Interval : 15 minutes tart date : Dec 19, 99 Start time : 00:00 top date : Dec 19, 99
ity/Town : ft. meyers beach coation : on estero blvd. Stop time : 24:00 County : lee ec 19 Total Volume for All Lanes nd Time 00 01 02 03 04 05 06 07 08 09 10 --------r Total 249 142 107 44 45 55 105 300 399 578 }-------

}-----idnight Total : 12276

M peak hour begins: 11:15 AM peak volume: 800 Peak hour factor: 0.95 M peak hour begins: 17:00 PM peak volume: 965 Peak hour factor: 0.94 ************************

r Total 851 920 913 885 920 965 671 615 617 574 407 401

21

---- ---- ---- ----

nd Time 12 13 14 15 16 17 18 19 20

Volume Report with Midnight Totals

Page ata File : D1220002.PRN tation : 000000000311 dentification : 000011169902 Interval : 15 minutes

tart date : Dec 20, 99 Start time : 00:00 top date : Dec 20, 99 Stop time : 24:00 lty/Town : ft. meyers beach County : lee

ocation : on 5th street AVE

ec 20				Total	Volume	for A	ll Lan	es				
nd Time	00	01	02	03	04	05	06	07	08	09	10	11
) 15 30) 45) 00	13 4 6 3	4 4 9 · 9	4 2 1 2	2 1 · 0 0	1 0 1 1	2 1 5 4	4 9 7 6	13 14 27 15	28 37 31 23	31 38 36 47	65 38 41 35	36 49 44 46
} Total	26	26	9	3	3	12	26	69	119	152	179	175
nd Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	41 58 46 46	64 49 45 48	54 57 59 78	75 59 70 71	70 65 65 49	97 60 65 67	62 78 50 40	35 38 29 33	23 40 25 18	22 23 19 23	18 22 12 21	15 13 38 17
Total	191	206	248	275	249	289	230	135	106	87	73	83

ídnight Total

peak hour begins : 09:45 peak hour begins: 09:45 AM peak volume: 191 Peak hour factor: 0.73 peak hour begins: 17:00 PM peak volume: 289 Peak hour factor: 0.74

Volume Report with Midnight Totals Page 1

Data File : D1220003.PRN Station : 000000000312

[dentification : 000011169903 Interval : 15 minutes

3tart date : Dec 20, 99 Start time : 00:00 3top date : Dec 20, 99 Stop time : 24:00 City/Town : ft. meyers beach County : lee

Location			san car									
7******* Dec 2.0		· * * * * * * * * * * * * * * * * * * *				****** lume fo			*****	*****	*****	****
End Time	00	01	02	03	04	05	06	07	08	09	10	11
15	20	18	16	6	6	13	32	95	121	143	161	165
30	23	24	16	8	5	14	44	99	127	137	158	156
45	17	20	14	5	9	17	·53	118	148	160	162	153
00	19	16	18	3	13	17	56	110	148	167	171	139
ir Total	79	78	64	22	33	61	185	422	544	607	652	613
End Time	12	13	14	15	16	17	18	19	20	21	22	23
15	131	147	154	175	183	199	183	108	76	54	88	39
30	172	154	166	200	191	179	167	110	64	69	44	41
45	154	134	164	203	172	176	133	71	71	56	40	38
00	177	159	169	185	177	172	132	68	75	58	40	29
Ir Total	634	594	653	763	723	726	615	357	286	237	212	147
Aidnight AM peak h PM peak h	our be	gins gins	: 10:15 : 15:15	Pi	M beak	volume volume	: 7	71	Peak he	our fac	ctor ·	0 95
******** Dec 20	*****	*****				****** lume fo			*****	****	*****	****
End Time	00	01	02	03	04	05	06	07	08	09	10	11
15	39	11	9	9	4	9	37	99	135	128	133	149
30	19	16	14	7	4	10	59	88	131	153	184	188
45	27	1.8	Я	3	1 1	15	06	121	111	1.0	1 7777	100

00	20	18 16	8 4	3 7	11 8	15 21	86 104	131 109	144 174	150 172	177 162	186 232
Ir Total	105	61	35	26	27	55	286	427	584	603	656	755
End Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	172 165 191 180	217 203 176 194	147 161 158 151	163 147 149 156	136 176 149 155	145 156 157 133	141 146 117 122	95 94 120 112	96 74 94 122	101 76 90 68	74 48 63 46	36 39 51 44
ir Total	708	790	617	615	616	591	526	421	386	335	231	170

lidnight Total : 9626

M peak hour begins: 11:15 AM peak volume: 778 M peak hour begins: 12:30 PM peak volume: 791 Peak hour factor: 0.84 Peak hour factor: 0.91 *************************

Volume Report with Midnight Totals ***********************

: D1220003.PRN tation : 000000000312

dentification : 000011169903

Interval : 15 minutes tart date : Dec 20, 99 Start time : 00:00

top date : Dec 20, 99 Stop time : 24:00 ity/Town : ft. meyers beach County : lee

pocation : on san carlos blvd. ***************************

ec 20				Total	Volume	for A	All Lan	es				
nd-Time	00	01	02	03	04	05	06	07	08	09	10	11
) 15) 30 45) 00	59 42 44 39	29 40 38 32	25 30 22 22	15 15 . 8 10	10 9 20 21	22 24 32 38	69 103 139 160	194 187 249 219	256 258 292 322	271 290 310 339	294 342 339 333	314 344 339 371
r Total	184	139	99	48	60	116	471	849	1128	1210	1308	1368
ad Time	12	13	14	15	16	17	18	19	20	21	22	23
) 15 30 45) 00	303 337 345 357	364 357 310 353	301 327 322 320	338 347 352 341	319 367 321 332	344 335 333 305	324 313 250 254	203 204 191 180	172 138 165 197	155 145 146 126	162 92 103 86	75 80 89 73
<pre> Total)</pre>	1342	1384	1270	1378	1339	1317	1141	778	672	572	443	317

idnight Total : 18933

AM peak hour begins: 11:00 AM peak volume: 1368 Peak hour factor: 0.92 peak hour begins: 12:30 PM peak volume: 1423 Peak hour factor: 0.98

Volume Report with Midnight Totals ****************************** Page Data File : D1220001.PRN Station (: 000000000310 Identification: 000012169901 Interval : 15 minutes Start date : Dec 20, 99 Start time : 00:00 Stop date : Dec 20, 99 Stop time : 24:00 City/Town : ft. myers beach Location : estere blvd. 574 57. County Eastbound Volume for Lane 1 End Time 00 01 02 03 04 07 08 09 -----_ _ _ _ _ _ _ _ ----1 2 0 1 0 2 _ _ _ _ ----15 1 17 6 7 3 0 8 7 3 1 0 3 2 4 0 0 0 3 13 23 28 30 29 45 1 3 6 13 22 23 3.0 34 00 23 29 43 ---23 10 3 13 45 80 93 125 -----Ind Time 15 16 17 ---- ---- ------------_ _ _ _ 31 41 53 43 43 29 49 40 36 35 29 36 36 30 42 49 38 37 30 33 32 17 20 33 38 53 19 15 45 33 39 34 50 38 34 40 40 35 00 34 32 13 38 43 24 31 16 20 10 9 -----------_ _ _ _ ____ -------r Total 140 172 165 164 163 123 138 113 105 163 idnight Total : 2147 M peak hour begins: 11:30 AM peak volume: 150 Peak hour factor: 0.87 M peak hour begins: 13:15 PM peak volume: 184 Peak hour factor: 0.87 ************************* Westbound Volume for Lane 2 nd Time 00 01 02 03 04 06 07 08 09 10 ----------------_ _ _ _ ----

 10
 7
 3
 0
 2

 8
 3
 2
 0
 2

 0
 2
 4
 3
 2

 3
 2
 1
 6
 6

 _ _ _ _ 18 24 66 13 43 30 89 2 11 11 41 57 101 125 45 11 2 16 00 6 3 41 46 62 111 98 25 35 64 70 105 101 ----____ ------r Total 48 21 10 9 60 nd Time 12 13 14 17 18 19 20 ____ ----____ ----_ -- -103 112 70 87 60 121 77 62 57 28 23 106 100 88 68 78 100 79 79 56 53 43 33 45 93 102 97 68 87 84 77 64 41 3.0 16 116 64 44 70 73 92 81 37 33 17 _ _ _ _ - - - -____ Total 418 306 397 298 284 218 dnight Total : 4918 I peak hour begins: 10:30 AM peak volume: 440 Peak hour factor: 0.88 PM peak hour begins: 12:45 PM peak volume: 430 Peak hour factor: 0.93 *****************************

4	ec 20 				Total	Volume	for All	l Lanes	3				
1	nd Time	00	01	02	03	04	05	06	07	08	09	10	11
	15 30 45 00	33 19 19 8	15 15 7 7	11 6 5 2	5 2 5 1	1 0 3. 6	4 3 . 5 9	9 16 17 31	40 24 44 48	55 64 68 87	83 85 85 95	125 131 141 130	124 154 132 148
Ĺ.	Total	79	44	24	13	10	21	73	156	274	348	527	558
I	nd Time	12	13	14	15	16	17	18	19	20	21	22	23
James, James,	15 3.0. 45 00	134 148 126 150	153 143 152 122	123 117 137 113	130 117 106 107	112 116 126 115	161 137 117 145	95 109 115 102	112 111 104 95	91 89 91 60	93 70 73 57	64 63 43 43	37 48 40 26
)	Total	558 	570	490	460	469	560	421	422	331	293	213	151

idnight Total : 7065

)

)

Volume Report with Midnight Totals ***************************** Data File : D1220004.PRN Station : 000000000313 Identification: 000011169904 Interval : 15 minutes Start date : Dec 20, 99 Start time : 00:00 Stop date : Dec 20, 99 Stop time : 24:00 City/Town : ft. meyers beach Location : on estero blvd. County : lee ******************************** Northbound Volume for Lane 1 07 08 09 ----____ 15 13 30 9 8 4 2 0 1 29. ------------ - -- -Ir Total 33 32 Ind Time ----- ----_ _ _ _ --------3.0 25 31 44 . _ _ _ _ _ _ ----____ ~ - - -----------------Ir Total 118 101 127 108 120 lidnight Total : 1683 M peak hour begins: 11:00 AM peak volume: 120 Peak hour factor: 0.79 Peak hour begins: 18:45 PM peak volume: 147 Peak hour factor: 0.84 ****************************** Southbound Volume for Lane 2 nd Time 00 01 ----____ ____ ----_ _ _ _ --------_ _ _ ~ r Total 129 _______ nd Time 12 _ _ _ _ _ _ _ _ 207 230 207 · ----- , ----____ --2-idnight Total : 12419 M peak hour begins: 11:15 AM peak volume: 918 Peak hour factor: 0.89 Peak hour begins: 13:00 PM peak volume: 944 Peak hour factor: 0.94

3200 Bailey Lane at Airport Road, Naples FL 33942

Volume Report with Midnight Totals Page 2 ****************************

: D1220004.PRN tation : 000000000313

dentification : 000011169904

Interval : 15 minutes tart date : Dec 20, 99 Start time : 00:00 top date : Dec 20, 99 Stop time : 24:00

ity/Town : ft. meyers beach County : lee

ocation : on estero blvd.

ec 20				Total	Volume	for A	ll Lan	es				
nd Time	00	01	02	03	04	05	06	07	08	09	10	11
) 15 30) 45) 00	67 35 33 23	23 28 24 20	14 18 12 8	10 8 9 7	5 4 12 14	13 12 21 30	40 71 96 123	122 102 145 136	158 162 187 210	174 211 190 219	212 234 225 213	199 252 255 295
r Total	158	95	52	34	35	76	330	505	717	794	884	1001
nd Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	232 242 271 246	264 274 257 250	247 278 263 259	274 234 233 225	226 261 234 226	256 240 249 235	211 231 198 211	176 171 206 186	152 143 169 167	181 119 149 122	128 83 98 69	64 69 80 62
r Total	991	1045	1047	966	947	980	851	739	631	571	378	275

idnight Total : 14102

M peak hour begins : 11:15 AM peak volume : 1034 Peak hour factor : 0.88 M peak hour begins : 14:15 PM peak volume : 1074 Peak hour factor : 0.97

lidnight Total : 287

M peak hour begins: 11:30 AM peak volume: 24 Peak hour factor: 0.60 M peak hour begins: 13:00 PM peak volume: 30 Peak hour factor: 0.68

Volume Report with Midnight Totals

Page lata File : D1221002.PRN Station : 000000000311 dentification : 000011169902 Interval : 15 minutes tart date : Dec 21, 99 Start time : 00:00 top date : Dec 21, 99
ity/Town : ft. meyers beach
ocation : on 5th at AVE Stop time : 24:00 County : lee ************************* Total Volume for All Lanes nd Time 00 01 02 03 04 05 06 07 08 09 10)_____ _____) 15 3 8 4 5 0 4 4 15 32 31 41 30 6 7 1 1 1 1 7 17 33 47 44 45 5 4 0 2 1 2 12 15 32 47 50 00 10 4 3 1 0 2 16 21 33 36 55 48 37 45 ____ r Total 24 23 8 9 2 9 39 68 130 161 190 174 nd Time 12 13 14 15 16 17 18 19 20 21 22 -------____ _ _ _ ----_ _ _ 17 10 51 1.8 r Total 186 199 224 265 341 260 223 183 121 93 82

(idnight Total : 3110

M peak hour begins: 10:30 AM peak volume: 197 Peak hour factor: 0.90 M peak hour begins: 16:30 PM peak volume: 359 Peak hour factor: 0.66

*****	****		Bailey Volum	Lane a	at Air ort wi	th Midn	ad, N ight	aples Total				ge 1
Data File Station Identific Start dat Stop dat City/Town Location *******	cation ce ce	: D122 : 0000 : 0000 : Dec : Dec : ft. : on :	21003.F 0000003 0111699 21, 99 21, 99 meyers	PRN 312 903 9 9 s beach	ı Lvd.	I S S	nterv tart top ounty	ral time time	: 15 m : 00:0 : 24:0 : lee	inutes 0 0		
Dec 21			No	orthbou	ınd Vo	lume fo	r Lan	e 1				
End Time	00	01	02	03	04	05	06	07	08	09	10	11
15 30 45 00	35 24 24 22	24 24 21 21	17 19 9 8	8 8 2 5	6 7 10 11	11 13 20 24	23 43 67 66	94 92 126 122	134 142	135 146 164 163	175 181 171 155	184 184 139 170
Hr Total	105	90	53	23	34	68	199	434		608	682	677
End Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	158 135 161 131	157 141 171 148	153 154 163 175	177 181 176 181	198 184 184 197	171		104 103 97 66	57 81 73 68	83 59 50 51	70 50 69 42	55 41 50 28
Hr Total	585	617	645	715	763	712	662	370		243	231	174
Midnight AM peak h PM peak h ******* Dec 21	nour be	egins : egins :	: 16:00 ***** Sc	PN::***** outhbou	1 peak	volume	: 7 ****	63 ****	Peak ho	our fac	tor:	0.96
End Time			02	03	04	. 05	.06	07	08	09	10	11
15 30 45	28 39 25	20 14 17 12	16 8 12 2	8 9 8 8	6 6 7 4	12 5 12 22	29 75 81 103	94 92 119 112	124 128 165 133	145 133 140 148	128 132 151 154	164 129 138 186
Hr Total	103	63	38	33	23	51	288	417	550	566	565	617
End Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	178 178 191 144	176 167 169 165	168 153 156 154	147 154 159 159	145 176 160 176	146 156 160 153	141 125 114 121	106 122 100 118	108 110 81 95	126 121 88 78	82 66 66 73	60 54 43 39
Hr Total	691	677	631	619	657	615	501	446	394	413	287	196
Midnight AM peak h PM peak h ******	our be	egins :	9441 11:30 12:00	AM PM *****	peak peak	volume	:'~ 68 : 69 ****	80 91 *****	Peak ho	our fac	tor :	0.90

Volume Report with Midnight Totals Page 2

top date : Dec 21, 99 Start time : 00:00 stop time : 24:00 sty/Town : ft. meyers beach County : lee

docation : on san carlos blvd.

ec 21				Total	volume	e for A	uii Lan	.es				
nd Time	00	01	02	03	04	05	06	07	08	09	10	11
) 15) 30 45 00	63 63 49 33	44 38 38 38	33 27 21 10	16 17 10 13	12 13 17 15	23 18 32 46	52 118 148 169	188 184 245 234	228 262 307 281	280 279 304 311	303 313 322 309	348 313 277 356
r Total	208	153	91	56	57	119	487	851	1078	1174	1247	1294
nd Time	12	13	14	15	16	17	18	19	20	21	22	23
15) 30) 45) 00	336 313 352 275	333 308 340 313	321 307 319 329	324 335 335 340	343 360 344 373	323 329 351 324	320 292 298 253	210 225 197 184	165 191 154 163	209 180 138 129	152 116 135 115	115 95 93 67
r Total	1276	1294	1276	1334	1420	1327	1163	816	673	656	518	370

idnight Total : 18938

Volume Report with Midnight Totals Page ***** Data File : D1221001.PRN Station : 00000000310 Identification: 000012169901 Interval : 15 minutes Start date : Dec 21, 99 : 00:00 Start time date : Dec 21, 99 Stop time : 24:00 City/Town : ft. myers beach Location : estero-blvd. 57/4 ST. County : lee ******************** Eastbound Volume for Lane 1 End Time 8.0 0 . 5 5 - - - -- - - -----Hr Total End Time ____ _ _ _ _ ____ ____ ____ _ _ _ _ ____ _ _ _ _ 24 43 2.4 ____ _ - - -----____ --------____ Hr Total 149 137 161 190 150 125 Midnight Total : 2165 AM peak hour begins: 11:00 AM peak volume: 145 Peak hour factor: 0.93 PM peak hour begins: 16:15 PM peak volume: 195 Peak hour factor: 0.73 ************************ Westbound Volume for Lane 2 01 02 ______ --------_ _ _ _ 0.0 Hr Total End Time _ _ _ _ ____ _ _ _ ~ ----_ _ _ _

Midnight Total : 5139

endings in the second second

Wilson Millon Donton (Doole

3200 Bailey Lane at Airport Road, Naples FL 33942

Volume Report with Midnight Totals Paqe 2 : D1221001.PRN tation : 000000000310 Interval : 15 minutes dentification : 000012169901 : Dec 21, 99 Start time : 00:00 tart date top date : Dec 21, 99
ity/Town : ft. myers beach
pcation : enterprehised. 57H ST. Stop time : 24:00 County : lee Total Volume for All Lanes

nd-Time 00 01 02 03 04 06 07 08 09 05 11 ____ ____ ----
 21
 4
 5
 3
 3
 2
 8

 13
 10
 5
 1
 3
 2
 15

 13
 9
 8
 1
 1
 5
 17

 18
 12
 8
 5
 0
 10
 38
 33 57 44 89 33 57 92 124 44 89 83 122 60 101 89 106 30 45 108 0.0 18 148 Total 65 35 26 10 7 19 78 176 312 362 467 536 }-----139 181 138 132 113 107 104 104 62 114 107 30 124 137 154 130 122 133 97 81 96 91 86 38
 144
 133
 110
 142
 107
 103
 88
 89
 87
 83

 143
 117
 125
 131
 147
 89
 93
 94
 64
 49
 45 122 83 55 0.0 174 44 r Total 559 562 536 478 502 568 403 369 383 346

į́dnight Total : 7304

M peak hour begins : 11:15 AM peak volume : 543 Peak hour factor : 0.92 M peak hour begins : 12:45 PM peak volume : 593 Peak hour factor : 0.85

3200 Bailey Lane at Airport Road, Naples FL 33942

Volume Report with Midnight Totals Page 1 ***********************************

Interval

: 15 minutes

ata File : D1221004.PRN }tation : 000000000313

dentification: 000011169904

Start date : Dec 21, 99 Start time : 00:00 3top date : Dec 21, 99 Stop time : 24:00 lity/Town : ft. meyers beach County : lee

ocation : on estero blvd.

ec 21			No	orthbo	und Vo	lume f	or Lan	e 1				
Ind Time	00	01	02	03	04	05	06	07	08	09	10	11
15 30 45	6 6 6 2	2 2 6 4	3 2 2 0	1 0 0 2	1 1 0 0	0 1 2 1	2 2 6 13	12 3 12 16	14 9 17 21	17 16 22 21	29 30 31 27	27 35 23 23
Ir Total	20	14	7	3	2	4	23	43	61	76	117	108
and Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	25 12 30 25	34 25 35 28	29 19 34 38	13 22 14 18	25 36 28 20	29 69 21 26	26 23 33 33	31 32 23 25	34 30 19 30	37 20 31 19	28 29 30 13	20 17 17 23
Ir Total	92 	122	120	67	109	145	115	111	113	107	100	77

lidnight Total

M peak hour begins : 10:30 AM peak volume : 120 Peak hour factor: 0.86 146 'M peak hour begins : 16:30 PM peak volume : Peak hour factor: 0.53 ************************

/ec -24 · · · · · · · · · · · · · · · · · · ·	Southbound	Volume	for	Lane	2	

		·	S	Outibo	una vo	rume r	or ran	e z				•
ind Time	00	01	02	03	04	05	06	07	08	09	10	11
15 30 45 00	36 41 29 21	21 18 20 17	15 12 12 8	8 9 8 9	10 5 7 4	13 6 13 28	34 80 82 113	106 108 134 125	136 151 189 172	186 160 175 190	176 175 189 194	218 200 199 231
r Total	127	76	47	34	26	60	309	473	648	711	734	848
and Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	235 238 233 227	217 240 217 240	229 224 212 228	209 223 232 232	207 237 233 262	240 221 210 274	210 182 165 175	157 165 156 162	179 155 130 141	182 171 126 117	117 95 105 98	86 67 79 53
r Total		914	893	896	939	945	732	640	605	596	415	285

idnight Total : 12886

M peak hour begins: 11:30 AM peak volume: 903 Peak hour factor: 0.95 M peak hour begins : 16:15 PM peak volume : 972 Peak hour factor: 0.93 **************************

3200 Bailey Lane at Airport Road, Naples FL 33942

Page 2 Volume Report with Midnight Totals

ata File : D1221004.PRN tation : 00000000313

lentification : 000011169904 : 15 minutes Interval

tart date : Dec 21, 99 Start time : 00:00 Stop time : 24:00 : Dec 21, 99 top date lty/Town County : lee : ft. meyers beach

ocation : on estero blvd. ******************

. 🔌	c 21				Total	Volume	for Al	l Lan	es				
'n	d Time	00	01	02	03	04	05	06	07	08	09	10	11
	15 30 45 00	42 47 35 23	23 20 26 21	18 14 14 8	9 9 8 11	11 6 7 4	13 7 15 29	36 82 88 126	118 111 146 141	150 160 206 193	203 176 197 211	205 205 220 221	245 235 222 254
	Total	147	90	54	37	28	64	332	516	709	787	851	956
n)	d Time	12	13	14	15	16	17	18	19	20	21	22	23
Section Section Section 1	15 30 45 00	260 250 263 252	251 265 252 268	258 243 246 266	222 245 246 250	232 273 261 282	269 290 231 300	236 205 198 208	188 197 179 187	213 185 149 171	219 191 157 136	145 124 135 111	106 84 96 76
1	Total	1025	1036	1013	963	1048	1090	847	751	718	703	515	362

idnight Total : 14642

M peak hour begins: 11:30 AM peak volume: 986 Peak hour factor: 0.94 M peak hour begins: 16:30 PM peak volume: 1102 Peak hour factor: 0.95

Volume Report with Midnight Totals Page 1 ************************************** ata File : D1222002.PRN tation : 000000000311 dentification : 000011169902 Interval : 15 minutes tart date : Dec 22, 99 Start time : 00:00 top date : Dec 22, 99 Stop time : 24:00 ity/Town ocation : ft. meyers beach County : lee on 5th street AVE ************************ Westbound Volume for Lane 1 00 01 02 03 04 05 ____ _ _ _ _ _ _ _ _ ----____ 1 5 1 4 2 1 4 5 4 1 1 14 25 ____ ----____ _ _ _ _ _ _ _ _ 15 6 ______ ---------nd Time 12 13 ----_ - - -____ 112 63 18 51 79 33 17 _ _ _ _ ----_ _ _ _ ----_ - - -_ _ _ r Total 175 186 258 325 283 148 idnight Total M peak hour begins: 09:30 AM peak volume: 179 Peak hour factor: 0.79 M peak hour begins: 16:00 PM peak volume: 362 Peak hour factor: 0.81 ******************************* Eastbound Volume for Lane 2 nd Time 00 01 02 0.3 ---_ _ _ _ ____ 3.0 0 0 0 0 0 0 4. . .0 0 2 r Total ---- -----------____ ____ ----_ _ _ _ -------2.7 idnight Total : 304 M peak hour begins: 11:30 AM peak volume: 24 Peak hour factor: 0.60 M peak hour begins: 16:00 PM peak volume: 36 Peak hour factor: 0.47

3200 Bailey Lane at Airport Road, Naples FL 33942 Volume Report with Midnight Totals

Page 2 nta File : D1222002.PRN *l*àtion : 00000000311

Interval

: 15 minutes fart date : Dec 22, 99 Start time : 00:00 fop date : Dec 22, 99 Stop time : 24:00 ty/Town : ft. meyers beach County : lee

: on 5th street AVE **acation**

entification : 000011169902

c 22				Total	Volume	for All	Lane	es				*
nd Time	00	01	02	03	04	05	06	07	08	09	10	11
15 30) 45) 00	13 5 6 4	1 4 1 5	2 5 4 4	2 3 2 1	0 2 1 1	1 2 3 3	2 13 10 14	17 25 17 15	24 32 24 29	34 41 59 44	43 44 50 39	40 48 53 37
Total	28	11	15	8	4	9	39	74	109	178	176	178
nd Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	53 54 44 51	53 50 47 61	77 58 91 56	90 89 86 89	92 92 83 131	79 83 70 71	51 44 47 22	29 38 27 41	26 22 27 20	35 33 27 28	31 18 22 14	16 22 58 12
Total	202	211	282	354	398	303	164	135	95	123	85	108

idnight Total : 3289

peak hour begins: 11:30 AM peak volume: 197 Peak hour factor: 0.91 peak hour begins: 16:00 PM peak volume: 398 Peak hour factor: 0.76

3200 Bailey Lane at Airport Road, Naples FL 33942

Volume Report with Midnight Totals

Page 1

Data File : D1222003.PRN tation : 000000000312

Start date : Dec 22, 99 Start time : 00:00
Stop date : Dec 22, 99 Stop time : 24:00
City/Town : ft. meyers beach County : lee

socation : on san carlos blvd.

)ec 22			N	orthbo	und Vo	lume f	or Lan	e 1				
Ind Time	00	01	02	03	04	05	06	07	08	09	10	11
15 30 45 00	35 40 31 32	28 27 18 22	26 16 18 17	9 8 11 4	8 2 7 15	10 20 22 17	29 47 63 65	97 95 95 140	135 130 113 126	176 149 163 164	177 157 192 161	150 172 161 144
Ir Total	138	95	77	32	32	69	204	427	504	652	687	627
Ind Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	135 174 171 124	162 170 114 166	135 176 166 165	175 174 180 168	161 182 184 172	187 182 166 164	193 178 127 101	121 101 73 82	86 78 66 54	65 72 61 72	65 73 64 59	58 47 37 37
ir Total	604	612	642	697	699 	699	599 	377	284	270	261	179

1idnight Total : 9467

AM peak hour begins: 09:45 AM peak volume: 690 Peak hour factor: 0.90 Peak hour factor: 0.90 Peak hour factor: 0.97 Peak hour factor: 0.9

)ec 22	****	*****				****** olume f			*****	*****	****	****
End Time	00	01	02	03	04	05	06	07	08	09	10	11
15 30 45 00	27. 34 22 22	19 19 14 17	13 9 12 16	10 5 7 10	4 8 8 11	. 11 5 12 15	39 5.7 84 113	99 93 103 113	110 139 135 148	157 141 146 166	163 160 162 178	163 196 171 146
Ir Total	105	69	50	32	31	43	293	408	532	610	663	676
End Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	182 189 175 152	142 171 149 145	155 184 148 159	135 174 202 185	187 205 207 197	190 227 168 158	138 108 128 109	101 116 86 100	115 89 98 114	100 106 87 84	89 84 77 60	58 40 43 43

fidnight Total : 9871

607

646

696

698

Ir Total

M peak hour begins: 10:45 AM peak volume: 708 Peak hour factor: 0.90 M peak hour begins: 16:30 PM peak volume: 821 Peak hour factor: 0.90 M peak hour begins: 16:30 PM peak volume: 821 Peak hour factor: 0.90 M peak hour begins: 16:30 PM peak volume: 821 Peak hour factor: 0.90 M peak hour begins: 16:30 PM peak volume: 821 Peak hour factor: 0.90 M peak hour begins: 10:45 AM peak volume: 821 Peak hour factor: 0.90 M peak hour begins: 10:45 AM peak volume: 821 Peak hour factor: 0.90 M peak hour begins: 10:45 AM peak volume: 821 Peak hour factor: 0.90 M peak hour begins: 10:45 AM peak volume: 821 Peak hour factor: 0.90 M peak hour begins: 10:45 AM peak volume: 821 Peak hour factor: 0.90 M peak hour begins: 10:45 AM peak volume: 821 Peak hour factor: 0.90 M peak hour begins: 10:45 AM peak hour begins

743

483

403

416

377

310

184

Volume Report with Midnight Totals

Page : D1222003.PRN tation : 000000000312 dentification : 000011169903 Interval : 15 minutes tart date : Dec 22, 99 Start time : 00:00 top date : Dec 22, 99 Stop time : 24:00 ity/Town : ft. meyers beach carlos blvd. County : lee ************************************** Total Volume for All Lanes nd Time 00 01 02 03 04 05 06 07 08 09 ____ - - - --_____

 62
 47
 39
 19
 12
 21
 68
 196
 245
 333
 340
 313

 74
 46
 25
 13
 10
 25
 104
 188
 269
 290
 317
 368

 53
 32
 30
 18
 15
 34
 147
 198
 248
 309
 354
 332

 54
 39
 33
 14
 26
 32
 178
 253
 274
 330
 339
 290

 30 45 54 00 r Total 243 164 127 64 63 112 497 835 1036 1262 1350 }----nd Time 12 13 14 15 16 17 18 19 20 21 22 *}----- --- ---- ---- ----*____ ----_ _ _ _
 15
 317
 304
 290
 310
 348
 377
 331
 222
 201

 30
 363
 341
 360
 348
 387
 409
 286
 217
 167
 165 154 116 178 157 87 45 346 263 314 382 391 334 255 159 164 148 141 80 0.0 276 311 324 353 369 322 210 182 168 156 119 ---_ _ _ _ r Total 1302 1219 1288 1393 1495 1442 1082 780 700

idnight Total : 19338

M peak hour begins: 10:30 AM peak volume: 1374 Peak hour factor: 0.93 M peak hour begins: 16:30 PM peak volume: 1546 Peak hour factor: 0.94

3200 Bailey Lane at Airport Road, Naples FL 33942

M peak hour begins: 11:00 AM peak volume: 473 Peak hour factor: 0.83 M peak hour begins: 12:30 PM peak volume: 540 Peak hour factor: 0.79 M *************************

3200 Bailey Lane at Airport Road, Naples FL 33942

Volume Report with Midnight Totals Page 2

: D1222001.PRN lation : 000000000310

lentification : 000012169901 Interval : 15 minutes

fart date : Dec 22, 99 Start time : 00:00 iop date : Dec 22, 99 Stop time : 24:00 ty/Town : ft. myers beach cation : estembled. 57H ST County : lee

c 22				Total	Volume	for All	Lan	nes				•.
id Time	00	01	02	03	04	05	06	07	08	09	10	11
) 15 30) 45) 00	26 25 25 19	16 17 10 9	10 17 5 6	7 6 8 3	1 5 1	4 7 6 6	13 14 21 33	33 35 39 49	64 49 68 89	100 82 101 113	140 169 126 128	156 172 132 154
Total	95	52	38	24	17	23	81	156	270	396	563	614
nd Time	12	13	14	15	16	17	18	19	20	21	22	23
) 15 30 45 00	138 151 153 169	178 203 146 169	148 142 152 150	153 154 150 119	135 125 131 166	138 125 95 87	94 93 100 103	72 95 85 94	74 99 92 80	99 98 61 77	71 69 67 68	59 59 68 35
} Total	611	696	592	576	557	445	390	346	345	335	275	221

idnight Total : 7718

I peak hour begins: 11:00 AM peak volume: 614 Peak hour factor: 0.89 Y peak hour begins: 12:30 PM peak volume: 703 Peak hour factor: 0.87

Wilson, Miller, Barton & Peek 3200 Bailey Lane at Airport Road, Naples FL 33942 Volume Report with Midnight Totals Page Data File : D1222004.PRN : 000000000313 Identification: 000011169904 Interval : 15 minutes Start date : Dec 22, 99 Start time : 00:00 Stop date Stop time : 24:00 : Dec 22, 99 City/Town : ft. meyers beach County : lee Location : on estero blvd. ************************* Northbound Volume for Lane 1 End Time 00 01 ____ 3 - 1 ______ _ _ _ _ _ _ '___ _ _ _ _ ----Hr Total ---_ _ _ _ ____ _ _ _ _ _ _ _ _ ____ ---2.6 _____ -------_ _ _ _ ----_ - - -_ _ _ _ _ _ _ _ ----Hr Total 117 ______ Midnight Total : 1722 AM peak hour begins: 11:00 AM peak volume: 134 Peak hour factor: 0.80 PM peak hour begins: 13:45 PM peak volume: 130 Peak hour factor: 0.96 ************************** Dec 22 Southbound Volume for Lane 2 07 08 ----_ _ _ _ _ _ _ _ ----_ _ _ _ 33 20 0.0 _ - - ------____ ______ End Time ____ ____ _ _ _ _ _ _ _ _ _ _ _ _ Hr Total

Midnight Total : 13079

3200 Bailey Lane at Airport Road, Naples FL 33942

Volume Report with Midnight Totals Page 2

ta File : D1222004.PRN ation : 000000000313

lentification: 000011169904 Interval: 15 minutes

 Sart date
 : Dec 22, 99
 Start time
 : 00:00

 Stop time
 : 24:00

 Stop time
 : 24:00

 County
 : lee

acation : on estero blvd.

c 22				Total	Volume	for A	ll Lar	nes				
id Time	00	01	02	03	04	05	06	07	08	09	10	11
15 30 45 00	47 49 46 37	33 37 21 24	20 25 14 18	17 7 13 14	5 12 ·9 18	16 12 17 22	47 58 101 134	116 115 126 131	141 171 168 199	205 198 216 237	235 243 227 257	269 300 241 239
} Total	179	115	77	51	44	67	340	488	679	856	962	1049
nd Time	12	13	14	15	16	17	18	19	20	21	22	23
15 30 45 00	273 287 259 268	271 279 245 267	275 280 256 261	248 284 275 250	279 266 278 307	254 271 222 208	202 184 188 178	169 173 156 172	164 150 155 170	171 168 121 153	136 134 132 120	93 84 94 64
rotal	1087	1062	1072	1057	1130	955	752	670	639	613	522	335

idnight Total : 14801

)

)

John James, Johnson

)

.

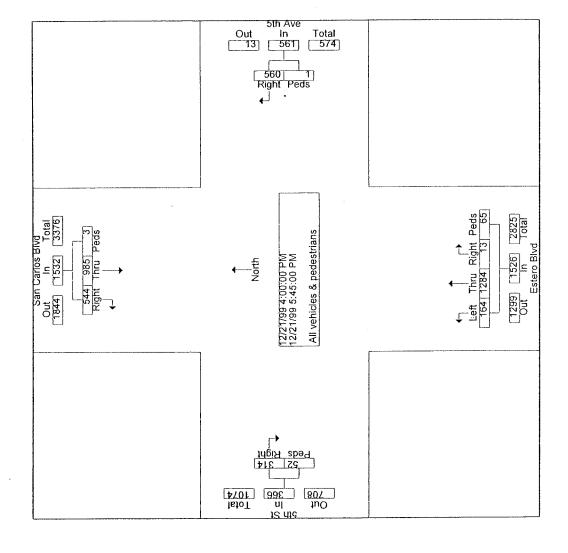
. .

Estero Blvd at Times Square

Turning Movement Counts

File Name: esteroblydmpr Site Code: 00000001 Start Date: 12/21/1999

Page No

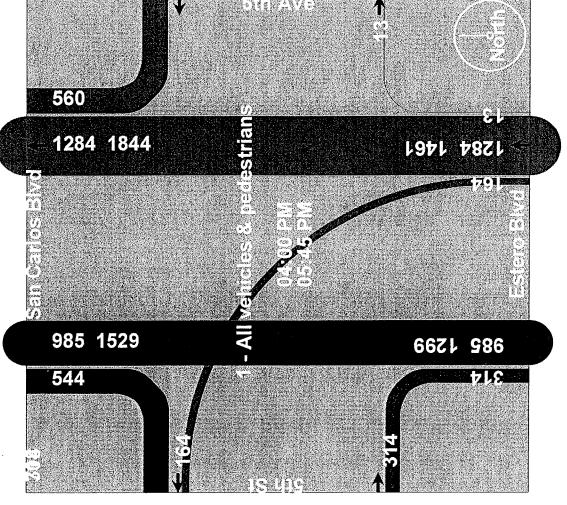

Counted By: AMC / MOD Weather: Clear Time: 4PM-6PM

Counter: JAMAR DB-400

San Carrios Blook								Group	S Printed- A	roups Printed- All vehicles & pedestrians	pedestrians							
Southbound Mestitoound Mestitoound Mestitoound Mestitoound Mestitoound Mestitoound Eastbound > <td></td> <td>San Ca</td> <td>rios Biva</td> <td></td> <td></td> <td></td> <td>5th Ave</td> <td></td> <td></td> <td></td> <td>Estero Blvd</td> <td></td> <td></td> <td></td> <td>5th St</td> <td></td> <td></td>			San Ca	rios Biva				5th Ave				Estero Blvd				5th St		
Thru Right Peds App. Total Right Peds App. Total Left Thru Right Peds App. Total Ap			South	punoqu			>	Vestbound				Northbound			4	=astbound	•	
10 44 44<	t Time	Thru	Right	Peds	1	Total	Right	Peds	App. Total		Thru	Right	<u></u>		Right	}	App. Total	Int. Total
142 43 0 185 68 0 68 16 184 2 21 223 40 4 44<	Factor	1.0	1.0	1.0			1.0	1.0		10	1.0	10	<u>i </u>		7	í		
151 39 0 190 56 0 56 153 153 1 3 187 37 13 50 130 38 3 171 135 0 135 25 161 1 10 197 53 10 63 571 178 58 0 206 57 336 0 63 23 160 2 40 799 166 34 200 136 66 0 202 63 0 63 23 160 2 40 799 166 34 200 151 55 0 206 51 0 51 22 150 1 5 178 4 35 54 134 0 184 17 152 3 1 183 28 4 3 4 45 4 4 4 4 4 4 4 <td>00 PM</td> <td>142</td> <td>43</td> <td>0</td> <td></td> <td>185</td> <td>68</td> <td>0</td> <td>68</td> <td> </td> <td>184</td> <td>2</td> <td>21</td> <td>223</td> <td>40</td> <td>4</td> <td>44</td> <td>520</td>	00 PM	142	43	0		185	68	0	68		184	2	21	223	40	4	44	520
130 38 3 171 135 0 135 25 161 1 10 197 53 10 63 148 58 0 206 77 0 77 13 172 1 6 192 36 7 43 134 58 0 206 51 0 63 23 160 2 5 190 46 34 200 154 134 0 206 51 0 63 23 160 2 5 190 46 34 20 154 134 0 188 47 0 61 18 152 3 11 183 28 4 45 45 73 111 0 184 63 1 164 18 152 3 4 16 16 4 16 4 16 4 16 16 16 <td>15 PM</td> <td>151</td> <td>33</td> <td>0</td> <td></td> <td>190</td> <td>26</td> <td>0</td> <td>56</td> <td></td> <td>153</td> <td>ı </td> <td>, ec</td> <td>187</td> <td>3.7</td> <td>. t.</td> <td>25.</td> <td>483</td>	15 PM	151	33	0		190	26	0	56		153	ı 	, ec	187	3.7	. t.	25.	483
148 58 0 206 77 0 77 13 172 1 6 192 36 7 43 571 178 3 752 336 0 63 23 160 5 40 799 46 34 200 136 66 0 202 63 0 63 22 150 1 5 190 46 9 55 151 55 0 206 51 0 61 22 150 1 6 43 28 4 33 73 111 0 184 63 1 15 2 4 176 43 2 45 414 366 0 780 614 8 25 727 148 18 166 64.3 35.5 0.2 99.8 0.2 16.1 4.1 4.1 32.2 0.3 1.6	30 PM	130	38	ო		171	135	0	135		161	- 4	, Ç	197	, r.	, C	 	766
571 178 3 752 336 84 670 5 40 799 166 34 200 136 66 0 202 63 0 63 22 160 2 5 190 46 9 55 151 55 0 206 51 0 51 22 150 1 6 178 31 3 34 35 73 111 0 184 63 1 64 18 152 2 4 176 43 2 45 414 366 0 780 224 1 225 80 614 8 25 727 148 18 166 985 544 3 152 80 614 8 25 727 148 18 166 64.3 35.5 0.2 10.1 4.1 0.0 14.1 0.0 14.	45 PM	148	28	0		206	77	0	77		172	٠ ٧	് ന	192	98	ō \	25.4	υ υ υ α
136 66 0 202 63 0 63 23 160 2 5 190 46 9 55 151 55 0 206 51 0 51 22 150 1 5 178 31 3 34 32 54 134 0 188 47 0 47 17 152 3 11 183 28 4 32 45	Total	571	178	က		752	336	0	336		670	5	40	799	166	34	200	2087
151 55 0 206 51 0 51 22 150 1 5 178 31 3 34 54 134 0 188 47 0 47 17 152 3 11 183 28 4 73 111 0 184 63 1 64 18 152 2 4 176 43 2 45 414 366 0 780 224 1 225 80 614 8 25 727 148 18 166 985 544 3 1532 560 1 561 164 1284 13 65 1526 314 52 366 64.3 35.5 0.2 99.8 0.2 10.7 84.1 0.9 4.3 85.8 14.2 24.7 13.7 0.1 38.4 14.1 0.0 14.1 4.1 0.0 38.3 7.9 1.3 9.2	:00 PM	136	99	0		202	63	0	63		160	2	ĸ	190	46	σ	ብ ጉጉ	بر 1
54 134 0 188 47 0 47 17 152 3 11 183 28 4 32 45 45 32 45 45 45 2 4 45 2 45 <td>15 PM</td> <td>151</td> <td>22</td> <td>0</td> <td></td> <td>206</td> <td>51</td> <td>0</td> <td>51</td> <td></td> <td>150</td> <td>۱ ۳۰۰</td> <td>) V.</td> <td>178</td> <td>6</td> <td>) (ʻ</td> <td>3 %</td> <td>0 00</td>	15 PM	151	22	0		206	51	0	51		150	۱ ۳۰۰) V.	178	6) (ʻ	3 %	0 00
73 111 0 184 63 1 64 18 152 2 4 176 43 2 45 414 366 0 780 224 1 225 80 614 8 25 727 148 18 166 985 544 3 1532 560 1 561 164 1284 13 65 1526 314 52 366 64.3 35.5 0.2 99.8 0.2 10.7 84.1 0.9 4.3 85.8 14.2 9.2 24.7 13.7 0.1 38.1 14.1 0.0 14.1 4.1 32.2 0.3 1.6 38.3 7.9 1.3 9.2	30 PM	54	134	0		188	47	0	47		152	- (r	, , .	7 2 2	- α Ο C	> <	7 0	0.04
414 366 0 780 224 1 225 80 614 8 25 727 148 18 166 985 544 3 1532 560 1 561 164 1284 13 65 1526 314 52 366 64.3 35.5 0.2 99.8 0.2 10.7 84.1 0.9 4.3 85.8 14.2 24.7 13.7 0.1 38.4 14.1 0.0 14.1 4.1 32.2 0.3 1.6 38.3 7.9 1.3 9.2	45 PM	73	111	0		184	63	-	64		152	2 0	4	176	43	7 0	45	469
985 544 3 1532 560 1 561 164 1284 13 65 1526 314 52 366 64.3 35.5 0.2 99.8 0.2 10.7 84.1 0.9 4.3 85.8 14.2 24.7 13.7 0.1 38.4 14.1 0.0 14.1 4.1 32.2 0.3 1.6 38.3 7.9 1.3 9.2	Total	4 4 4	366	0		780	224	-	225		614	8	25	727	148	180	166	1898
24.7 13.7 0.1 38.4 14.1 0.0 14.1 4.1 32.2 0.3 1.6 38.3 7.9 1.3	d Total	985	544	<u>ო</u> (1532	560		561		1284	<u></u>	65	1526	314	52	366	3985
	otal %	24.7	13.7	0.7		38.4	99.8 14.1		14.1	4.1	32.2	0.0 0.3	4 + 6. 6.	38.3	85.8 7.9	14.2 2.5 5.0	9.5	

Estero Blvd at Times Square

Turning Movement Counts


File Name: esteroblydmpn Site Code: 00000001 Start Date: 12/21/1999 Page No: 2

Counter: JAMAR DB-400 Counted By: AMC / MOD Weather: Clear Time: 4PM-6PM

Turning Movement Counts

File Name: esteroblydmpm Site Code: 00000001 Start Date: 12/21/1999

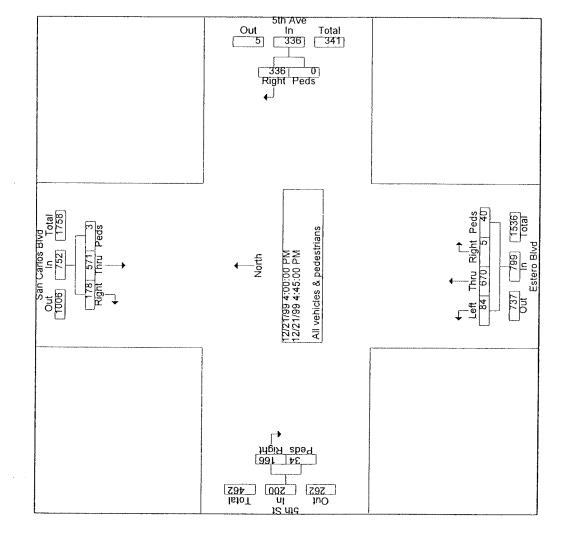
Start Date:

Counter: JAMAR DB-400 Counted By: AMC / MOD

Weather: Clear Time: 4PM-6PM

Turning Movement Counts

Counter: JAMAR DB-400 Counted By: AMC / MOD Weather: Clear Time: 4PM-6PM

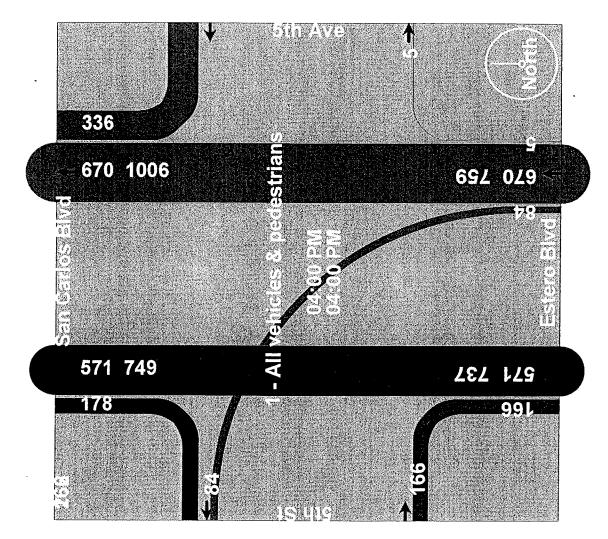

File Name: esteroblydmpr Site Code: 00000001 Start Date: 12/21/1999 Page No: 4

	Int. Total			2087))	566	0.922			
	Peds App. Total		_	200	1	63			63	0.794
5th St Eastbound	Peds			34	17.0	5			10	!
	Right	X		166	83.0	53		04:30 PM	53	
	Peds App. Total			799	•	197				0.896
	Peds			40	5.0	5			21	
Estero Bivd Northbound	Right	3		3	9.0	-			2	
ш 2	Thru			670	83.9	161			184	
	Left			84	10.5	25		04:00 PM	16	
	App. Total			336		135				0.622
5th Ave Westbound	Peds App. Total			0	0.0	0			0	
>	Right			336	100.0	135		04:30 PM	135	
	App. Total			752		171			206	0.913
os Bivd ound	Peds	ak 1 of 1		က	9.0	က			0	
San Carlos Blvd Southbound	Right	15 PM - Pe		178	23.7	38			58	
	Thru	PM to 05:4	4:00 PM	571	75.9	130		04:45 PM	148	
	Start Time Thru Right Peds App. Total	Peak Hour From 04:00	Intersection 04:00 PM	Volume	Percent	04:30 Volume	Peak Factor	High Int. 0	Volume	Peak Factor

Turning Movement Counts

Counter: JAMAR DB-400 Counted By: AMC / MOD

Weather: Clear Time: 4PM-6PM



File Name: esteroblydmpm Site Code: 000000001 Start Date: 12/21/1999 Page No: 5

File Name: esteroblydmpr Site Code: 00000001 Start Date: 12/21/1999 Page No: 6

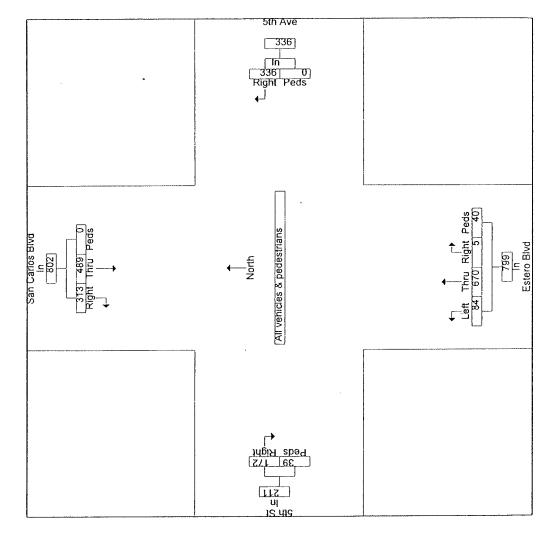
Turning Movement Counts

Counter: JAMAR DB-400 Counted By: AMC / MOD Weather: Clear Time: 4PM-6PM

Turning Movement Counts

Counter: JAMAR DB-400 Counted By: AMC / MOD

Weather: Clear Time: 4PM-6PM


File Name: esteroblydmpm Site Code: 000000001 Start Date: 12/21/1999 Page No: 7

		San Carlos Bivd Southbound	los Bivd Jound			5th Ave Westbound			μz	Estero Bivd Northbound				5th St Eastbound		
Start Time Thru Right Peds App. Total Right Ped	Thru	Right	Peds	App. Total	Right	S	App. Total	Left	Thru	Right	Peds App. Total	. Total	Right	Peds /	Peds App. Total	Int. Total
Peak Hour From 04:00) PM to 05:4	45 PM - Pe	ak 1 of 1))			
By Approach 04:45 PM	04:45 PM				04:00 PM			04:00 PM				_	04-15 PM			
Volume	489	313	0	802	336	0	336	84	670	ĸ	40	799	172	90	211	
Percent	61.0	39.0	0.0		100.0	0.0		20.0	0 68	9 0	י כ		2 τ 1 π	α α	1	
High Int.	04:45 PM				04:30 PM) •		04:00 PM	9	9	9		MG 08: X	0.		
Nolume	148	28	0	206		0		16	184	2	21	223	53	10	63	
Peak Factor				0.973			0.622			l			;	?	0.837	

Counter: JAMAR DB-400 Counted By: AMC / MOD Weather: Clear Time: 4PM-6PM

Estero Blvd at Times Square

Turning Movement Counts

File Name: esteroblydmpring Site Code: 000000001 Start Date: 12/21/1999 Page No: 8

Turning Movement Counts

Counted By: AMC / MOD Weather: Clear Time: 4PM-6PM

Counter: JAMAR DB-400

File Name: esteroblydmpm Site Code: 00000001 Start Date: 12/21/1999 Page No: 9

Start Date : Page No

336

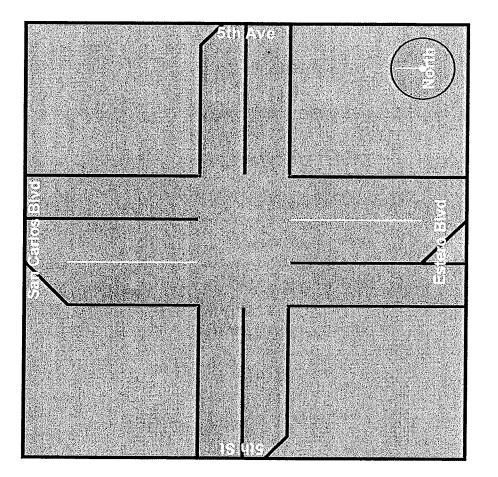
489

313

802

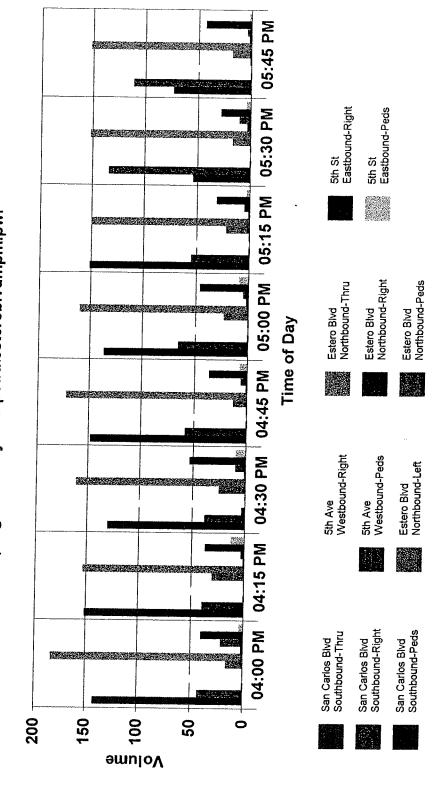
670 1006

694 049


199

681

7.1.


Counter: JAMAR DB-400 Counted By: AMC / MOD Weather: Clear Time: 4PM-6PM

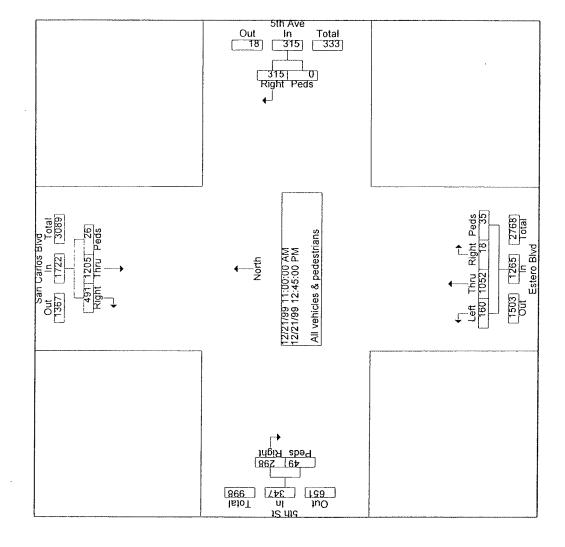
Estero Blvd at Times Square Turning Movement Counts

File Name: esteroblydmpr Site Code: 00000001 Start Date: 12/21/1999 Page No: 10

c:\program files\jamar\petra\esteroblvdmpm.pwf

Turning Movement Counts

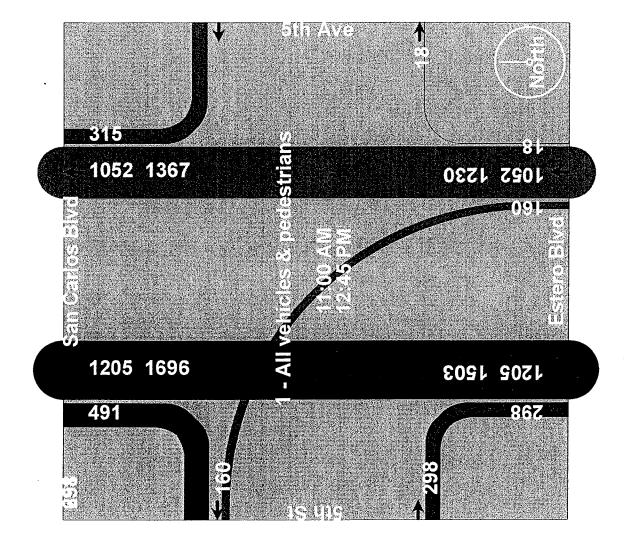
File Name: esteroblydmni Site Code: 00000001 Start Date: 12/21/1999 Page No: 1


Counter: JAMAR DB-400 Counted By: AMC / MOD Weather: Clear Time: 11AM-1PM

			Int Total		505	4 0 6 0 6	007	483	1884	907	7 0 7	1 4	4.0	1765	3649	
			Ann Total		54	σ κ	у С	- œ	182	107	7 %	† a	2 40	165	347	G.5
	5th St	Eastbound	- 1		10	. m	יי	ט גט	23	٧٢) (r	טע	, (26	4 4 1 1 1 1 1 1 1 1 1 1	ا. ن
		ш	Right	10	44	36	46	9 6	159	37	, t	- c	2 4 0 6	139	298 85.9	8.2
			App Total		195	184	15.6	174	709	787	200	7 7	141	556	1265	24.7
			Peds	,	4	~ ~	10	ויט	13	-	- ແ) น	, [22	35 2.8 3.5	O
	Estero Bivd	Northbound	Right	101	2	0	· ^	1 0	6	œ) - -	- c	, c	0	6 4 n	o.
& pedestrians	Д	Z	Thru	10	163	152	136	152	603	158	84	20,0	105	449	1052 83.2	0.07
inicles & be			Left	10	23	30	16	5	84	22	1 7	17	23	76	160 12.6	ţ. Ţ
rinted- All ve	 	****	App. Total		40	42	34	4	157	32	46	. c.	45	158	315	0.0
Groups PI	th Ave	estbound	Peds Ar	1	0	0	0	0	0	0	С	0	0	0	000	5
	3	⋠	Right	1.0	40	42	34	4	157	32	46	35	45	158	315 100.0	9
			App. Total		216	191	199	230	836	235	233	231	187	886	1722	1.
	s Blvd		ĺ	ļ	0	10	4	0	14	9	S	0	•	12	26 1.5 7	j
	San Carlos Blvd	Southbound	Right	1.0	57	54	26	69	236	64	61	72	28	255	491 28.5 13.5)
			Thru	1.0	159	127	139	161	586	165	167	159	128	619	1205 70.0 33.0)
			Start Time	Factor	11:00 AM	11:15 AM	11:30 AM	11:45 AM	Total	12:00 PM	12:15 PM	12:30 PM	12:45 PM	Total	Grand Total Apprch % Total %	
													ļ			

Turning Movement Counts

Counted By: AMC / MOD Counter: JAMAR DB-400


Time: 11AM-1PM Weather: Clear

File Name: esteroblydmnr Site Code: 00000001 Start Date: 12/21/1999 Page No: 2

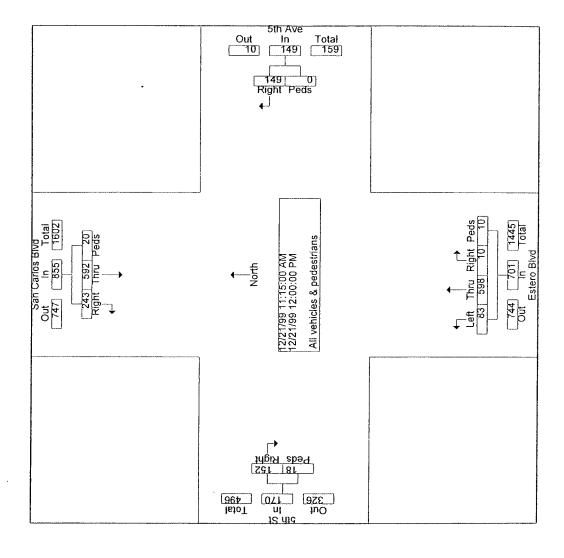
File Name: esteroblydmn Site Code: 00000001 Start Date: 12/21/1999 Page No: 3

Estero Blvd at Times Square Turning Movement Counts

Counter: JAMAR DB-400 Counted By: AMC / MOD Weather: Clear Time: 11AM-1PM

Turning Movement Counts

Counted By: AMC / MOD Weather: Clear Time: 11AM-1PM


Counter: JAMAR DB-400

File Name: esteroblydmnr Site Code: 00000001

Start Date : 12/21/1999 Page No : 4

San Carlos Blvd Southbound		San Carl Southb	los Bīvd Jound			5th Ave Westbound				Estero Blvd Northbound	,			5th St Eastbound		
Start Time	Thru	Right	Peds	App. Total	Right	Peds A	ds App. Total	Left	Thru	Right	Peds.	Peds. App Total	Right	Peds Ann Total	Ann Total	Int Total
Peak Hour From 11:1.	5 AM to 12:	45 PM - Pe	ak 1 of 1				-			0			6			
Intersection	11:15 AM						_									
Volume	592	243	20	855		0	149	83	200	Ç	ţ	701	152	ά	170	1875
Percent	69.2	28.4	2.3		100.0	0.0		17.8	85.3	4	, L)	89.4	, C	-	2
12:00 Volume	165	64	9	235		0	32	22	158	<u></u> 6	•	187	37) LC	42	496
Peak Factor) •)	-	·	õ)	Į	0 945
High Int. 12:00 PM	12:00 PM				11:15 AM			12:00 PM					11:30 AM) } }
Volume	165	64	ဖ	235	42	0	42	22	158	ဖ	4	187	46	ų:	ŗ.	
Peak Factor				0.910			0.887			•	-	0.937	2)	0.833	

Turning Movement Counts

File Name: esteroblydmnr

Site Code : 00000001 Start Date : 12/21/1999 Page No : 5

Counted By: AMC / MOD Weather: Clear Time: 11AM-1PM

Counter: JAMAR DB-400

File Name: esteroblydmnr Site Code: 00000001 Start Date: 12/21/1999 Page No: 6

149

598 747

592 835

243

L69 869

777 263

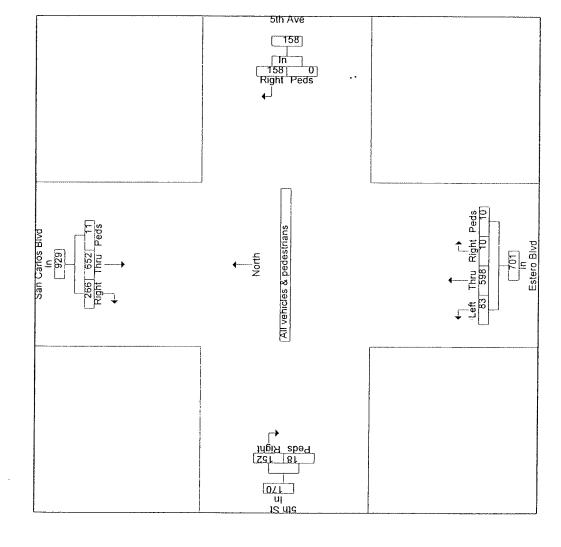
125

Counter: JAMAR DB-400 Counted By: AMC / MOD Weather: Clear Time: 11AM-1PM

Estero Blvd at Times Square

Turning Movement Counts

Turning Movement Counts

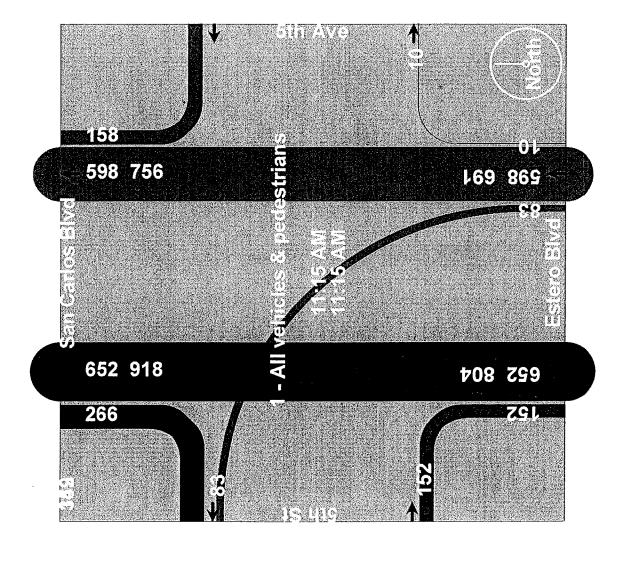

Counter: JAMAR DB-400 Counted By: AMC / MOD Weather: Clear Time: 11AM-1PM

File Name: esteroblydmn Site Code: 00000001 Start Date: 12/21/1999 Page No: 7

	San Carlos Blvd Southbound	os Blvd ound			5th Ave Westbound			2	Estero Blvd Northbound			ш	5th St Eastbound		
-	Right	Peds	Start Time Thru Right Peds App. Total Right Peds App. Total	Right	Peds	App. Total	Left	Thru	Thru Right	Peds App. Total	Total	Right	Right Peds App. Total	p. Total	Int. Total
12:4	15 PM - Pe	ak 1 of 1)					A Commence of the commence of						
AM				12:00 PM			11:15 AM					11:15 AM			
Volume 652	266	7	929	158	0	158	83	598	10	10	701	152	18	170	
70.2	28.6	1.2	and the second	100.0	0.0		11.8	85.3	4.1	1.4		89.4	10.6		
12:00 PM				12:15 PM			12:00 PM				_	1:30 AM			
165	64	9	235	46	0	46	22	158	9	~	187	46	2	21	
			0.988			0.859				0	0.937			0.833	

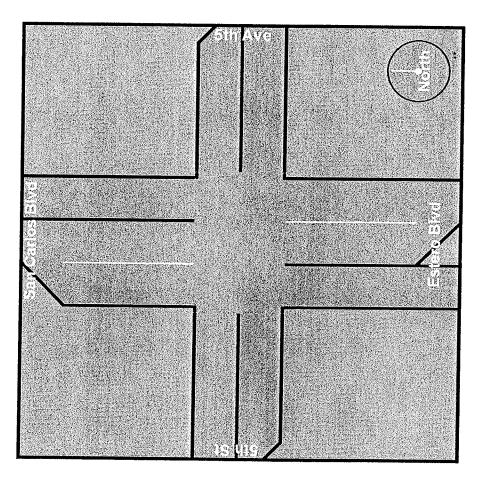
Turning Movement Counts

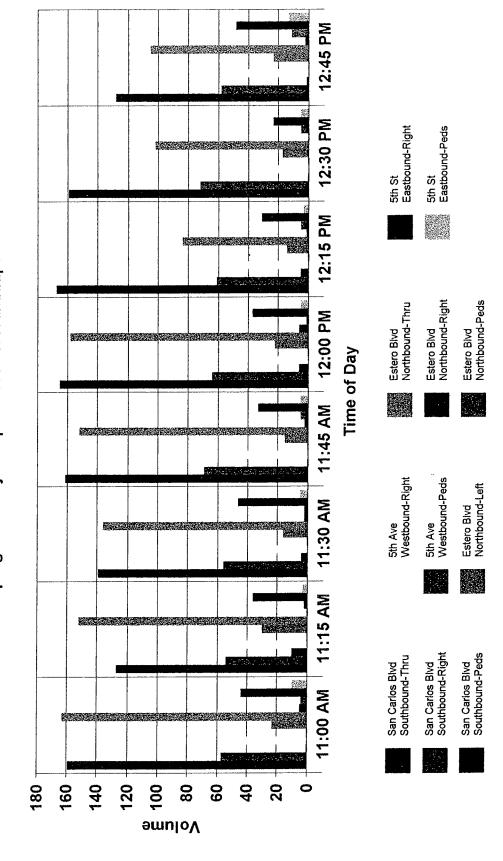
Counter: JAMAR DB-400 Counted By: AMC / MOD Weather: Clear Time: 11AM-1PM


File Name: esteroblydmni Site Code: 00000001 Start Date: 12/21/1999 Page No: 8

Counter: JAMAR DB-400 Counted By: AMC / MOD Weather: Clear Time: 11AM-1PM

Estero Blvd at Times Square


Turning Movement Counts


Turning Movement Counts

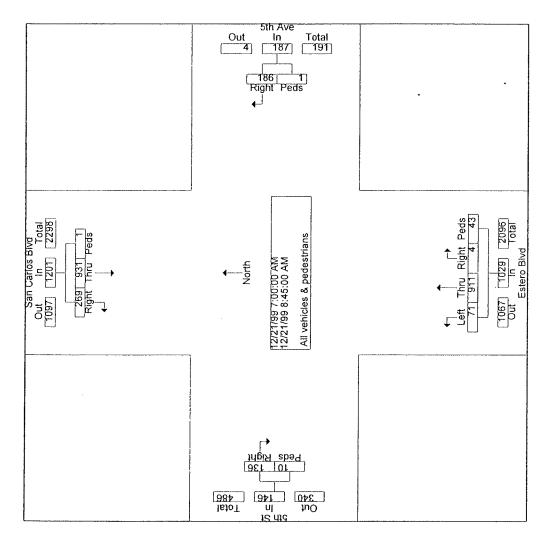
Counter: JAMAR DB-400 Counted By: AMC / MOD Weather: Clear Time: 11AM-1PM

File Name: esteroblydmni Site Code: 00000001 Start Date: 12/21/1999 Page No: 10

c:\program files\jamar\petra\esteroblvdmnn.pwf

Turning Movement Counts

File Name: esteroblydmarr Start Date : 12/21/1999 Site Code : 00000001


Page No

Counted By: AMC / MOD Weather: Rainy / overcast Time: 7AM-9AM

Counter: JAMAR DB-400

		San Carlos Blvd	los Blvd		1	5th Ave	TAVE		Ü	Estero Blvd				5th St		
		Southbound	punoc			Westbound			Z	Northbound			ш	Eastbound		
Start Time	Thru	Right	Peds	App. Total	Right	Peds A	App. Total	Left	Thru	Right	Peds App.	App. Total	Right	Peds A	App. Total	Int. Total
Factor	0.1	1.0	0.1		0.1	!		1.0	1.0	1.0	1.0		1.0	1		
07:00 AM	97	15	0	112	13	0	13	7	92	0	2	101	12	0	12	238
07:15 AM	92	4	0	06	17	0	17		93	-	เก	100	16	0	16	223
07:30 AM	135	24	0	159	13	-	14	∞	113	- -	9	128	10	2	12	313
07:45 AM	101	42	0	143	21	0	21	ω	114	0	7	129	9	4	<u></u>	304
Total	409	95	0	504	64	_	65	24	412	2	20	458	48	က	51	1078
08:00 AM	124	39	0	163	35	0	35	1	86	0	თ	118	17	ю	20	336
08:15 AM	120	29	~	150	30	0	30	7	129	~	ഗ	143	16	7	19	341
08:30 AM	150	48	0	198	30	0	30	13	136	0	Ŋ	154	30	0	30	412
08:45 AM	128	58	0	186	27	0	27	16	136	-	ო	156	25	7	27	396
Total	522	174	-	269	122	0	122	47	499	2	23	571	88	7	95	1485
Grand Total	931	269	-	1201	186	-	187	71	911	4	43	1029	136	10	146	2563
Apprch %	77.5	22.4	0.1		99.5	0.5		6.9	88.5	0.4	4.2		93.2	6.8		
Total %	36.3	10.5	0.0	46.9	7.3	0.0	7.3	2.8	35.5	0.2	1.7	40.1	5.3	0.4	5.7	

Turning Movement Counts

: esteroblydman File Name: esteroblyd Site Code: 000000001

Start Date : 12/21/1999 Page No : 2

Counter: JAMAR DB-400 Counted By: AMC / MOD Weather: Rainy / overcast Time: 7AM-9AM

Turning Movement Counts

File Name: esteroblydmam Site Code: 00000001 Start Date: 12/21/1999 Page No: 3 Site Code

Start Date Page No

911 1097 986 LL6 1200 931 **490** 126 269

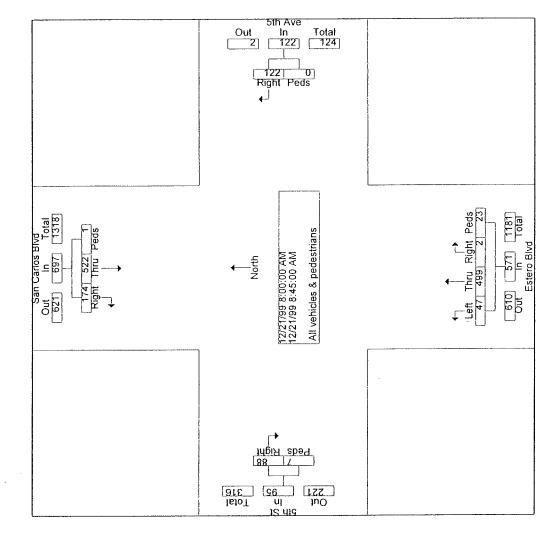
Counter: JAMAR DB-400 Counted By: AMC / MOD

Weather: Rainy / overcast Time: 7AM-9AM

Estero Blvd at Times Square Turning Movement Counts

Counter: JAMAR DB-400 Counted By: AMC / MOD Weather: Rainy / overcast Time: 7AM-9AM

File Name: esteroblydmarr Site Code: 00000001 Start Date: 12/21/1999 Page No: 4

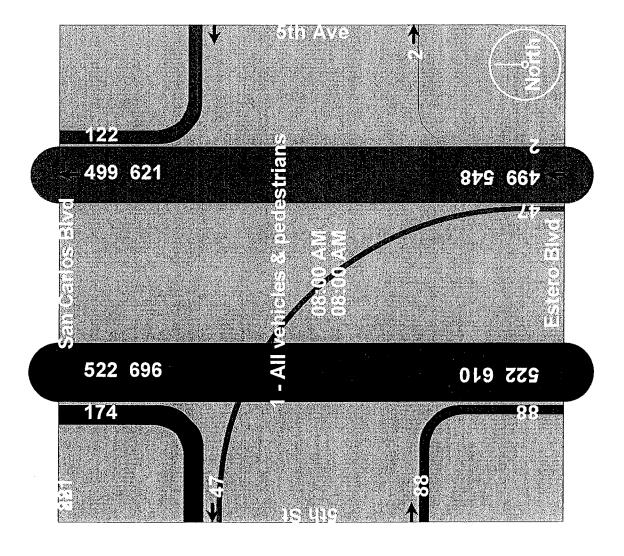

	Int. Total			1785	2	7	714	- 00.0		
	Peds App. Total			0)	Ċ	000		C	0.792
5th St Eastbound	Peds			7	7	1. c	>		c	>
	Right)		α	90 60	0.20	9	08:30 AM	30.00	3
	Peds App. Total			571	- - -	7	<u> </u>		156	0.915
	1	1		23	, <u>, , , , , , , , , , , , , , , , , , </u>	Э¥ F	ס		ď	•
Estero Bivd Northbound	Right			0	C))	>		•	-
H Z	Thru			499	27.4	136	3		136	2
	Left			47	α	7.5	2	08:45 AM	16	2
	App. Total			122		90	·····		35	0.871
5th Ave Westbound	Peds App. Total			0	0) C	•		O	•
>	Right			122	100.0	30)	08:00 AM	35	:
	App. Total			269		198)		198	0.880
os Biva	Peds	ak 1 of 1		•	0.1	0	•		0	
Southbound	Right	45 AM - Pe		174	25.0	48			48	
	Thru	AM to 08:4	08:00 AM	522		150		38:30 AM	150	
	Start Time Thru Right Peds App. Total	eak Hour From 07:00	Intersection (Volume	Percent	08:30 Volume	Peak Factor	High Int. 08:30 AM	Volume	Peak Factor

Turning Movement Counts

Counted By: AMC / MOD Weather: Rainy / overcast

Time: 7AM-9AM

Counter: JAMAR DB-400



Site Code : 00000001 Start Date : 12/21/1999 Page No : 5

File Name: esteroblydman

File Name: esteroblydmarr Site Code: 00000001 Start Date: 12/21/1999 Page No: 6

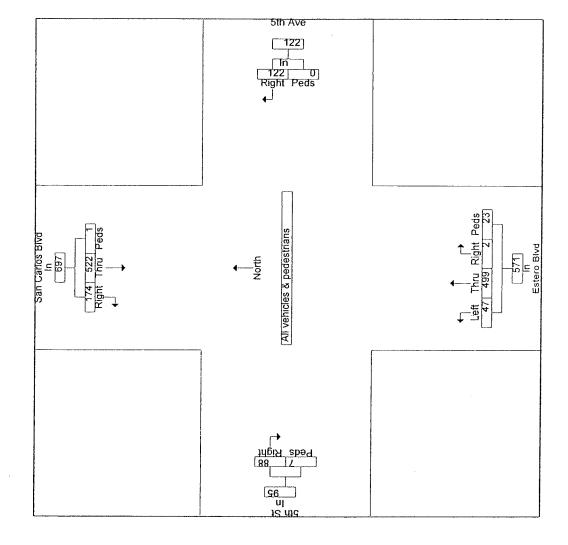
Turning Movement Counts

Counter: JAMAR DB-400 Counted By: AMC / MOD Weather: Rainy / overcast Time: 7AM-9AM

Turning Movement Counts

Weather: Rainy / overcast Time: 7AM-9AM

Counted By: AMC / MOD Counter: JAMAR DB-400


File Name: esteroblydmarr Site Code: 000000001 Start Date: 12/21/1999 Page No: 7

		San Carlos Blvd	los Bivd			5th Ave			ш	=stero Blvd				5th St	The state of the s	
		Southbound	punoc		>	Nestbound	77		Z	Northbound			ш	Eastbound		
Start Time Thru Right Peds App. Total Right Peds App. Total	Thru	Right	Peds	App. Total	Right	Peds	App. Total	Left	Thru	Right	Peds	Peds App Total	Right	Right Peds Ann Total	Ann Total	Int Total
Peak Hour From 07:0	0 AM to 08:4	45 AM - Pe	3k 1 of 1		}					6		1	6			Ì
By Approach 08:00 AM	08:00 AM				08:00 AM			08:00 AM					08:00 AM			
Volume	522	174	~	269	122	0	122	47	499	2	23	571	88	7	95	
Percent		25.0	0.1		100.0	0.0		8.2	87.4	4.0	4.0		92.6	7.	,	
High Int.	08:30 AM				08:00 AM			08:45 AM			•		08:30 AM			
Volume	150	48	0	198	35	0	35	16	136	_	ന	156	30	0	30	
Peak Factor				0.880			0.871					0.915			0.792	

Counter: JAMAR DB-400 Counted By: AMC / MOD Weather: Rainy / overcast Time: 7AM-9AM

Estero Blvd at Times Square

Turning Movement Counts

File Name: esteroblydmar

: 12/21/1999 Site Code : 00000001

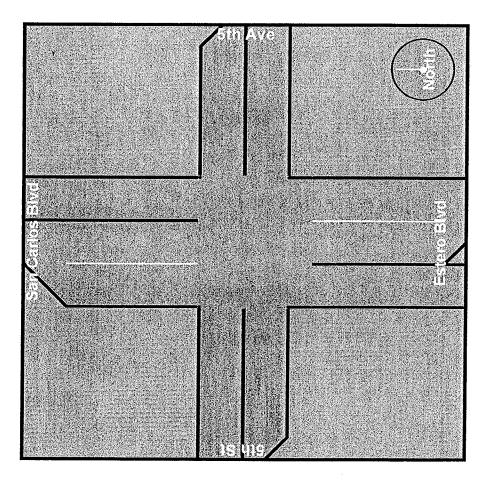
Start Date : Page No :

Turning Movement Counts

File Name: esteroblydman

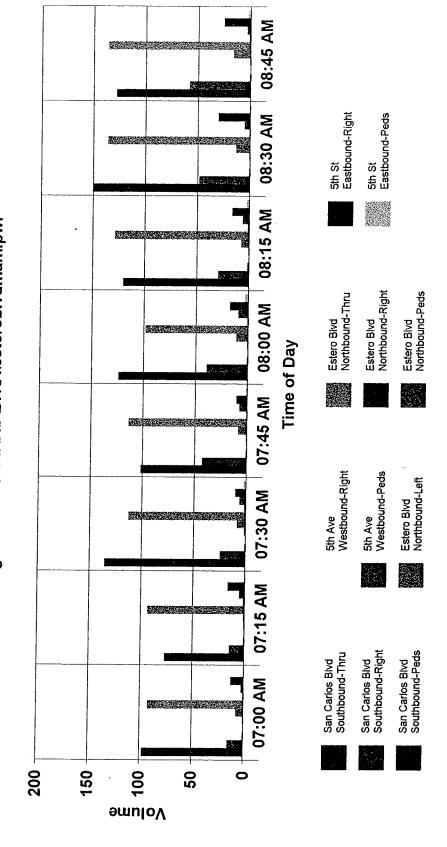
: 12/21/1999 : 00000001

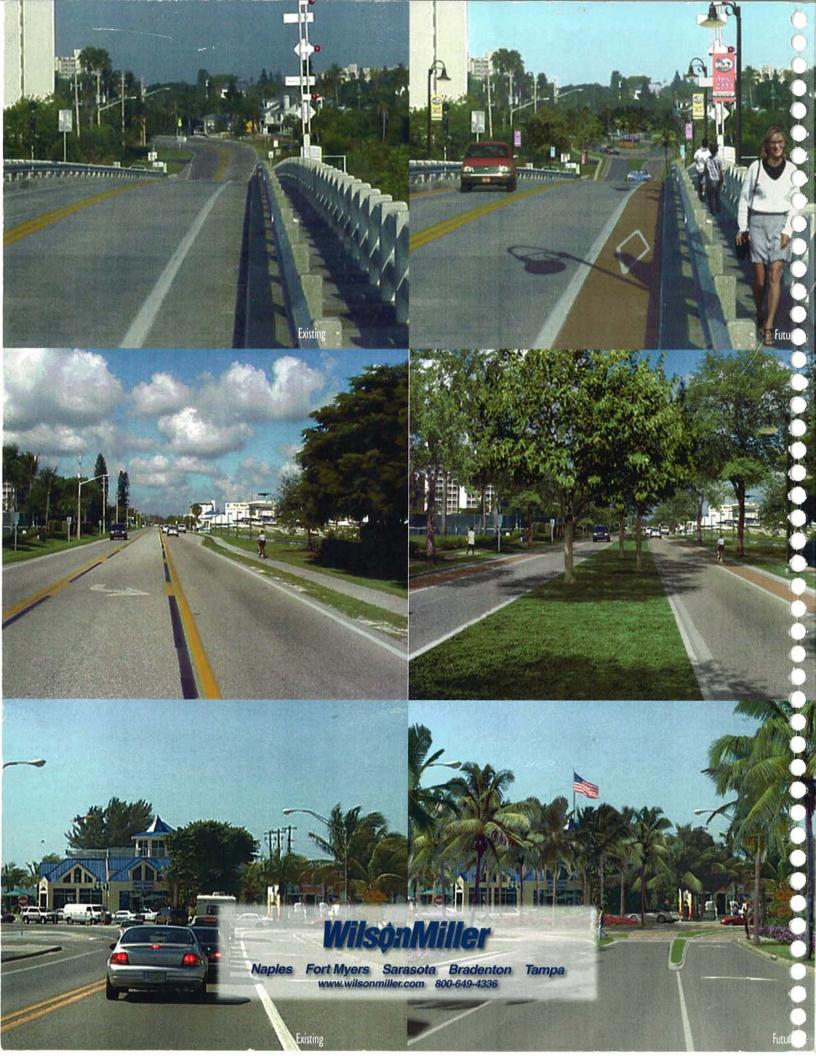
Start Date Page No


Site Code

499 621 879 667 522 696 222 610 174

Counter: JAMAR DB-400 Counted By: AMC / MOD Weather: Rainy / overcast Time: 7AM-9AM


Counter: JAMAR DB-400 Counted By: AMC / MOD Weather: Rainy / overcast Time: 7AM-9AM


Estero Blvd at Times Square Turning Movement Counts

File Name: esteroblydmar Site Code: 00000001 Start Date: 12/21/1999 Page No: 10

C:\Program Files\JAMAR\PETRA\esteroblvdmam.pwf

