PART 1 GENERAL

1.1 SCOPE OF WORK

A. Furnish all labor, materials, equipment and incidentals required and install complete and ready for operation all valves and appurtenances as shown on the Drawings and as specified herein.

B. The equipment shall include, but not be limited to, the following:

1. Eccentric Plug Valves
2. Check Valves
3. Pinch Check Valves
4. Vacuum Breakers
5. Air Release Valves
6. Corporation Stops
7. Flange Adapter Couplings
8. Flexible Couplings
9. Diaphragm Seals
10. Unions
11. Mechanical Type Seals
12. Hose End Faucets
13. Pressure Gauges
14. Reduced Pressure Backflow Preventor
15. Flow Meters

1.2 DESCRIPTION OF SYSTEMS

A. All of the equipment and materials specified herein are intended to be standard for use in controlling the flow of wastewater and reclaimed water.

1.3 QUALIFICATIONS

A. All of the types of valves and appurtenances shall be products of well established reputable firms who are fully experienced, reputable and qualified in the manufacture of the particular equipment to be furnished. The equipment shall be designed, constructed and installed in accordance with the best practices and methods and shall comply with these specifications as applicable.
1.4 SUBMITTALS

A. Submit within 30 days after execution of the contract a list of materials to be furnished, the names of the suppliers and the date of delivery of materials to the site.

B. Complete shop drawings of all valves and appurtenances shall be submitted to the ENGINEER for approval in accordance with the requirements of Section 01340 and the General Conditions.

1.5 TOOLS

A. Special tools, if required for normal operation and maintenance shall be supplied with the equipment.

PART 2 PRODUCTS

A. General:

1. All valves and appurtenances shall be of the size shown on the Drawings and as far as possible all equipment of the same type shall be from one manufacturer.

2. All valves and appurtenances shall have the name of the maker and the working pressure for which they are designed cast in raised letters upon some appropriate part of the body.

B. Eccentric Plug Valves

1. All valves shall be eccentric plug valves unless otherwise specified. Valves shall be as manufactured by DeZurik, Homestead, or approved equal.

2. Plug valves shall be tested in accordance with AWWA C504 Section 5. Each valve shall be performance tested in accordance with AWWA C504 Section 5.2 and shall be given a leakage test and hydrostatic test as described in AWWA C504 Paragraphs 5.3 and 5.4. The leakage test shall be applied to the face of the plug tending to unseat the valve. The Manufacturer shall furnish certified copies of reports covering proof of design testing as described in AWWA C504 Section 5.5.

3. Plug valves shall be of the tight closing, resilient faced, non-lubricating variety and shall be of eccentric design such that the valve's pressure member (plug) rises off the body seat contact area immediately upon shaft rotation during the opening movement. Valve pressure ratings shall be as follows and shall be established by hydrostatic tests as specified by ANSI B16.1-1967. Valves shall be drip-tight in both directions (bi-directional) at rated pressure, 175 psi through
12-inch diameter, 150 psi for 14-inch diameter and above. The valve shall be provided with a 2-inch square operating nut.

4. The valve body shall be constructed of cast iron ASTM A126, Class B. Body ends shall be mechanical joint to meet the requirements of AWWA C111/ANSI A21.11 or single gasket push-on type.

5. The valve plug shall be constructed of cast iron or ductile iron and shall have a conical seating surface which is eccentrically offset from the center of the plug shafts. The plug and shafts shall be integral. The entire plug face shall be totally encapsulated with Buna N (Nitrile) rubber in all valve sizes. The rubber to metal bond must withstand 75 lbs. pull under test procedure ASTM D-429-73, Method B. When the plug is in full open position, plug geometry and body waterway contours must provide a passageway that allows flow capacity equal to 100% of the adjacent pipe area.

6. Valve seat mating surface shall be constructed of a welded-in overlay of not less than 90% nickel or be a one-piece 304 stainless steel ring. Seat ring contour must be precision machined.

7. A mechanical "brake" shall be supplied on all valves and shall be capable of "locking" the valve in any intermediate position between full-open and full-closed.

8. Valves shall have multiple V-type packing and packing glands and shall be capable of being field adjusted or repacked without the bonnet or plug being removed from the valve with the valve under the full rated pressure. Valves shall have a port position indicator.

9. For corrosion protection, the interior ferrous surfaces of all plug valves shall have a 2-part epoxy internal coating to a minimum of 20 mils thickness.

10. Valve shaft seals shall be adjustable and comply with AWWA C507 Section 10 and with AWWA C507 Section 11.

11. Manual valves shall have lever or gear actuators and tee wrenches, extension stems, floorstands, etc. as indicated on the plans. All valves 6" and larger shall be equipped with gear actuators. All gearing shall be enclosed in a semi-steel housing and be suitable for running in a lubricant with seals provided on all shafts to prevent entry of dirt and water into the actuator. All actuator shafts shall be supported on permanently lubricated bronze bearings. Actuators shall clearly indicate valve position and an adjustable stop shall be provided to set closing torque. All adjustable stop shall be provided to set closing torque. All exposed nuts, bolts, and washers shall be zinc or cadmium plated. Valve packing adjustment shall be accessible without disassembly of the actuator.
12. Valves and gear actuators for submerged service shall have seals on all shafts and gaskets on the valve and actuator covers to prevent entry of water. Actuator mounting brackets for buried or submerged service shall be totally enclosed and shall have gasket seals. All exposed nuts, bolts, springs and washers shall be stainless steel.

13. Three-way plug valves shall be non-lubricated gear oriented. Valve bodies shall be ASTM A-126 Class, and be semi-steel with 125 lb. ANSI standard flanges. Plugs shall be resilient faced. Three-way valves shall be 3-way, 3 port 270 degree turn.

14. Plug valves installed such that actuators are 6 feet or more above the floor shall have chain wheels.

15. Where shown on the Drawings, plug valves shall be installed with extended shafts and actuators. Actuators for extended shafts shall be mounted on floor stands where indicated on the drawings or shall be removable handwheels where floor stands are not called for. Six-inch sleeves shall be provided for extended shafts in all floors; where necessary covers shall be provided. Shafts shall be of adequate strength to operate the valve and shall be 304 stainless steel where submerged and carbon steel elsewhere. Floor stands and covers, where called for shall be cast iron. Floor stands shall be equipped with valve position indicators. Where shown on the drawings, plug valves shall be furnished with extended bonnets, equal to DeZurik Figure 640.

16. All buried plug valves shall have a remote position indicator in the valve box showing position of the valve. A stainless steel centering and I.D. plate shall be provided showing direction of opening and number of turns to open for each valve.

C. Valves for Buried Service

1. Valves for buried service shall meet all the requirements as specified herein for interior except that buried valves shall have mechanical joint ends.

2. All buried valves shall have cast-iron three piece valve boxes, valve boxes shall be provided with suitable heavy bonnets to extend to such elevation at the finished grade surface as directed by the ENGINEER. The barrel shall be two-piece, screw type, having 5\(\frac{3}{4}\)" shaft. The upper section shall have a flange at the bottom having sufficient bearing area to prevent settling, shall be designed so as to prevent the transmission of surface loads directly to the valve or piping, and shall be complete with cast iron covers. Covers shall have "SEWER" cast into the top. The covers shall be so constructed as to prevent tipping or rattling. Valve boxes shall be manufactured by OPELICA FOUNDRY COMPANY, Opelika, Alabama or TYLER PIPE DIVISION, Tyler, Texas or approved equal.
3. One tee-handled gatewrench of suitable length shall be furnished to operate each valve with a valve box.

4. Where valves are located out of pavement, the boxes shall be adjusted to finished grade and a concrete slab two feet square and six inches thick shall be poured around the box.

5. Valve boxes shall be of the heavy duty, traffic bearing cast iron, adjustable screw type with a drop cover. The valve box assembly shall consist of a bottom section, top section and cover which is cast from gray iron, formulated to ASTM specification A-48 latest revision, class 30 minimum and shall be free from blowholes, shrinkage or other imperfections not true to pattern. The shaft size shall be 5 1/4" and the adjustable length shall be from 18" to 24". The wall thickness shall be 3/16" ± 1/16". The weight of the assembly shall be 61 pounds ± 2 pounds, with the cover weight being a minimum of 12 pounds.

6. The name of the manufacturer and foundry of origin shall be cast into each of the components of the assembly in legible form. The assembly shall be suitable for highway traffic wheel loads of 16,000 pounds and shall withstand a proof load test of 25,000 pounds without failure or permanent deflection, as per Federal Specification RR-F-621-C, latest revision. The valve box shall be cast, machined, assembled, and packaged within the United States and shall fully comply with the Buy American provisions of Public Law 102-240, enacted 12/18/91.

D. Check Valves

1. Check valves smaller than 10 cm (4") shall have a bronze body with a bronze disk. Check valves shall absolutely prevent the return of water back through the valve when the inlet pressure decreases below the delivery pressure. The valve must be full opening, tight seating and its seat right shall be renewable and must be securely held in place by a threaded joint; the valve disc shall be bronze and shall be suspended from a non-corrosive shaft which will pass through a stuffing box.

2. The check valve 10 cm (4") and larger shall be a rubber flapper type swing check valve and the body and cover shall be cast iron construction meeting ASTM A126 Class B or ductile iron construction. The flapper shall be Buna-N having an "O" ring seating edge and be internally reinforced with steel.

3. Flapper to be captured between the body and the body cover in a manner to permit the flapper to flex from closed to full open position during flow through the valve. Flapper shall be easily removed without need to remove valve from line. Check Valves to have full pipe size flow area. Seating surface to be on a 45° angle requiring the flapper to travel only 35° from closed to full open position, for minimum head loss and non-slam closure.
4. Non-slam closing characteristic shall be provided through a short 35\(^\circ\) disc stroke and a memory flex disc return action.

5. When essential to create backflow through the check valve, i.e.; to prime or backflush a clogged pump, an external backflow device shall be included.

6. Valve exterior to be painted Phenolic Primer Red Oxide for high resistance to corrosion.

7. For corrosion protection, the interior ferrous surfaces of all check valves used in sewage applications shall be coated with a factory applied, two-part epoxy coating to a minimum of 20 mils thick.

8. Materials of construction shall be certified in writing to conform to A.S.T.M. specified above.

9. Valve shall be APCO Series 100 Rubber Flapper Swing Check Valve, as manufactured by Valve & Primer Corporation, Schaumburg, Illinois, U.S.A. or series 500 Swing Flex Valve as manufactured by Val-Matic Valve and Manufacturing Corporation or approved equal.

10. All valves shall have a three year 100% replacement guarantee.

E. Pinch Check Valves

1. Pinch check valves smaller than 10 cm (4") shall be Red Valves Series 2633 Buna N in a Stainless Steel body with Stainless Steel end connectors or approved equal.

2. Pinch check valves 10 cm (4") and larger shall be Red Valves Series 33 Buna N in an aluminum body or approved equal.

F. Air Release Valves

1. Air release valves (ARV) used on sewer force mains shall be of the automatic type designed for wastewater applications. The valve body shall be cast iron construction, ASTM A126, Class B, and all internal working parts shall be 316 Series stainless steel, and BUNA-N orifice button. The venting orifice shall be a minimum of 2.54 cm (1") in diameter. The inlet openings shall be sized per manufacturer’s recommendation but no less than 5 cm (2") NPT screwed connection. ARVs shall be manufactured by Vent-o-mat Series RGX 316 Series stainless steel, or Bermad Flow Control Accessories 300 Series stainless steel air release valves ARI-5-022.
2. The Bermad Flow Control Accessories model ARI D-40 combination valve shall be installed to release air from the discharge piping at the pump station. This valve shall be located as shown in Section 9 of the Lee County Utilities Operations Manual, just past the 90 degree bend on the header pipe detail. The working pressure shall be 200 psi minimum and shall have a 2-inch threaded connection. Air discharged from this valve shall be released through connecting 2 inch PVC or HDPE pipe back through into the wetwell.

G. Corporation Stops

1. Corporation stops for connections to ductile iron or steel piping shall be all brass or bronze suitable for 150 psi test pressure and similar to Mueller Co. H-15029 or equal by Clow Corp.

H. Flange Adapter Couplings

1. Flange adapter couplings shall be of the size and pressure rating required for each installation and shall be suitable for use on either cast iron or ductile iron pipe. They shall be similar or equal to Dresser Company, Style 128. All couplings shall have a sufficient number of factory installed anchor studs to meet or exceed the test pressure rating for this project, 100 psi minimum.

I. Flexible Couplings:

1. Flexible couplings shall be either the split type or the sleeve type as shown on the Drawings.
 a. Split type coupling shall be either the split type or the sleeve type as shown on the Drawings. The couplings shall be mechanical type for radius groove piping. The couplings shall mechanically engage and lock grooved pipe ends in a positive coupling and allow for angular deflection and contraction and expansion.
 b. Couplings shall consist of malleable iron, ASTM Specification A47, Grade 32510 housing clamps in two or more parts, a single chlorinated butyl composition sealing gasket with a "C" shaped cross-section and internal sealing lips projecting diagonally inward, and two or more oval track head type bolts with hexagonal heavy nuts conforming to ASTM Specification A183 and A194 to assemble the housing clamps. Bolts and nuts shall be Series 300 stainless steel.
 c. Victaulic type couplings and fittings may be used in lieu of flanged joints. Pipes shall be radius grooved as specified for use with the Victaulic couplings. Flanged adapter connections at fittings, valves, and equipment shall be Victaulic Vic Flange Style 741, equal by Gustin-Bacon Group, Division of Certain-Teed Products, Kansas City, Kansas, or equal.
d. Sleeve type couplings shall be used with all buried piping. The couplings shall be of steel and shall be Dresser Style 38, Smith Blair Style 413, Baker Allsteel, or equal. The coupling shall be provided with stainless steel bolts and nuts unless indicated otherwise.

e. All couplings shall be furnished with the pipe stop removed.

f. Couplings shall be provided with gaskets of a composition suitable for exposure to the liquid within the pipe.

g. If the Contractor decides to use Victaulic couplings in lieu of flanged joints, he shall be responsible for supplying supports for the joints.

J. Diaphragm Seals:

1. Diaphragm seals shall be installed on pressure gauge connection to all lines where shown on the Drawings, to protect pressure switches used to monitor excessive pressures on pipe lines. The diaphragm shall be "thread attached" to both piping and pressure switches. Diaphragm seals shall be constructed of cadmium plated carbon steel, except for the lower housing which shall be specifically chosen according to the fluid pressure being monitored.

2. Diaphragm seals shall have a flushing connection and be Type SB Mansfield and Green; No. 877 Trerice; Ashcroft; or equal.

K. Unions

1. Unions on ferrous pipe 2" in diameter and smaller shall be 150 pounds malleable iron, zinc-coated. Unions on water piping 2\(\frac{3}{4}\)" in diameter and larger shall be flange pattern, 125 pound class, zinc-coated. Gaskets for flanged unions shall be of the best quality fiber, plastic, or leather. Unions shall not be concealed in walls, ceilings, or partitions.

L. Mechanical Type Seals

1. Mechanical type seals shall consist of an adjustable modular bolted, synthetic rubber and plastic sealing element. The sealing element shall be Link-Seal LS-300-C as manufactured by Thunderline Corp., Inkster, Michigan or approved equal.

M. Hose End Faucets

1. Hose end faucets for potable water supply at submersible stations shall be Zurn Model Z-1385. Faucet shall be furnished with removable key and shall be lockable.
N. Pressure Gauges

1. Each pressure gauge shall be direct mounted, cast aluminum case, with a 4\(\frac{3}{8}\)" diameter dial and furnished with a clear glass crystal window, 3/8" shut-off valve, and a bronze pressure snubber. Provide diaphragm seals between shut-off valve and pressure gauge on all sludge and lines with nonclear matter in suspension of solution. All gauges shall be weatherproofed. The face dial shall be white finished aluminum with jet black graduations and figures. The face dial shall indicate the units of pressure being measured (e.g., feet, inches, etc.) or be dual scale.

2. If shown on the drawings, each pump discharge line shall be furnished with gauges sized 0-100 psi.

O. Reduce Pressure Backflow Preventor

1. If shown on the drawings, backflow preventors shall be supplied at each pump station.

P. Flow Meters

1. Meters shall be of the magnetic type with Teflon lining, stainless steel electrodes and ultrasonic cleaning, or the universal venturi type with flanged cast or ductile iron body and bronze throat. Flow meters shall be designed to record both the peak pumping station capacity and anticipated minimum flows with equally high accuracy. The meters shall be direct reading in gallons per minute, totalizing in million gallons per day and recording on 12-inch diameter, 24-hour linear charts in gallons per minute. All meters shall also be tied to the Radio Telemetry SCADA System. The flow metering system shall be installed within the pumping station structure, if space is available, or in an exterior protected and drained pit. In all cases, meter by-pass valves and piping shall be provided.

2. Flow meters shall be provided for all sewage pumping stations with ultimate ratings greater than 1500 gpm, or as directed by LCU.

PART 3 EXECUTION

3.1 INSTALLATION

A. All valves and appurtenances shall be installed in the locations shown, true to alignment and rigidly supported. Any damage to the above items shall be repaired to the satisfaction of the ENGINEER before they are installed.
B. Valves shall be carefully inspected, opened wide and then tightly closed and the various nuts and bolts shall be tested for tightness. Special care shall be taken to prevent any foreign matter from becoming lodged in the valve seat. Valves, unless shown otherwise shall be set with their operator shaft vertically. Any valve that does not operate correctly shall be removed and replaced.

C. Valve boxes shall be carefully centered over the operating nuts of the valves so as to permit a valve wrench or key to be fitted easily to the operating nut. Valve boxes shall be set to conform to the level of the finished surface and held in position by a ring of concrete placed under the support flange as shown on the details in Section 9 of the Lee County Utilities Operations Manual. The valve box shall not transmit surface loads to the pipe or valve. Care shall be taken to prevent earth and other material from entering the valve box. Any valve box which is out of alignment or whose top does not conform to the finished ground surface shall be dug out and reset. Before final acceptance of the work, all valve boxes shall be adjusted to finish grade. Valve operating risers shall be installed with any valves required to ensure that the operating nut is 30-inches or less from the ground surface.

D. After installation, all valves and appurtenances shall be tested at least 1 hour at the working pressure corresponding to the class of pipe, unless a different test pressure is specified. If any joint proves to be defective, it shall be repaired to the satisfaction of the ENGINEER.

E. Install all floor boxes, brackets, extension rods, guides, the various types of operators and appurtenances as shown on the Drawings that are in masonry floors or walls, and install concrete inserts for hangers and supports as soon as forms are erected and before concrete is poured. Before setting these items, check all plans and figures which have a direct bearing on their location and he shall be responsible for the proper location of these valves and appurtenances during the construction of the structures.

F. Pipe for use with flexible couplings shall have plain ends as specified in the respective pipe sections in Division 15.

G. Buried flanged or mechanical joints shall be made with Series 300, stainless steel bolts. All exposed bolts shall be made with Series 300 stainless steel bolts.

H. Prior to assembly of split couplings, the grooves as well as other parts shall be thoroughly cleaned. The ends of the pipes and outside of the gaskets shall be moderately coated with petroleum jelly, cup grease, soft soap or graphite paste, and the gasket shall be slipped over one pipe end. After the other pipe has been brought to the correct position, the gasket shall be centered properly over the pipe ends with the lips against the pipes. The housing sections then shall be placed. After the bolts have been inserted, the nuts shall be tightened until the housing sections are firmly in contact, metal-to-metal, without excessive bolt tension.
I. Prior to the installation of sleeve-type couplings, the pipe ends shall be cleaned thoroughly for a distance of 8". Soapy water may be used as a gasket lubricant. A follower and gasket, in that order, shall be slipped over each pipe to a distance of about 6" from the end, and the middle ring shall be placed on the already laid pipe end until it is properly centered over the joint. The other pipe end shall be inserted into the middle ring and brought to proper position in relation to the pipe already laid. The gaskets and followers shall then be pressed evenly and firmly into the middle ring flaires. After the bolts have been inserted and all nuts have been made up finger-tight, diametrically opposite nuts shall be progressively and uniformly tightened all around the joint, preferably by use of a torque wrench of the appropriate size and torque for the bolts.

3.2 SHOP PAINTING

A. Ferrous surfaces of valves and appurtenances shall receive a coating of rust-inhibitive primer. All pipe connection openings shall be capped to prevent the entry of foreign matter prior to installation.

3.3 FIELD PAINTING

A. All metal valves and appurtenances specified herein and installed in valve and meter pits will be painted as specified in Section 09900.

3.4 INSPECTION AND TESTING

A. Completed pipe shall be subjected to hydrostatic pressure test for hours at full working pressure. All leaks shall be repaired and line retested as approved by the ENGINEER. Prior to testing, the gravity pipelines shall be supported in an approved manner to prevent movement during tests.

END OF SECTION