SUMMARY OF PAY ITEMS - ROADWAY

<table>
<thead>
<tr>
<th>PAY ITEM</th>
<th>ITEM DESCRIPTION</th>
<th>UNITS</th>
<th>QUANTITY</th>
<th>PHASE 1</th>
<th>PHASE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>101-1</td>
<td>Mobilization</td>
<td>LS</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>101-2</td>
<td>Maintenance of Traffic</td>
<td>LS</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>102-3</td>
<td>Commercial Material for Driveway Maintenance</td>
<td>CY</td>
<td>1500</td>
<td>1000</td>
<td>500</td>
</tr>
<tr>
<td>102-14</td>
<td>Traffic Control Officer</td>
<td>MH</td>
<td>800</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>104-10-2</td>
<td>Synthetic Bales</td>
<td>EA</td>
<td>4757</td>
<td>2837</td>
<td>1920</td>
</tr>
<tr>
<td>104-11</td>
<td>Floating T嚅turbity Barrier</td>
<td>LF</td>
<td>190</td>
<td>60</td>
<td>130</td>
</tr>
<tr>
<td>104-13-1</td>
<td>Staked Silt Fence (Type III)</td>
<td>LF</td>
<td>27865</td>
<td>18130</td>
<td>9750</td>
</tr>
<tr>
<td>104-13-2</td>
<td>Staked Silt Fence (Type IV)</td>
<td>LF</td>
<td>6887</td>
<td>6887</td>
<td>10</td>
</tr>
<tr>
<td>104-16</td>
<td>Rock Bags</td>
<td>EA</td>
<td>2600</td>
<td>1080</td>
<td>1520</td>
</tr>
<tr>
<td>110-1-1</td>
<td>Clearing and Grubbing</td>
<td>AC</td>
<td>52</td>
<td>40</td>
<td>12</td>
</tr>
<tr>
<td>110-7-1</td>
<td>Pavement Removal of Existing Concrete Pavement</td>
<td>SY</td>
<td>7792</td>
<td>4930</td>
<td>2862</td>
</tr>
<tr>
<td>110-7-1</td>
<td>Mailbox (Furnish & Install)</td>
<td>EA</td>
<td>30</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>120-1</td>
<td>Excavation Regular</td>
<td>CY</td>
<td>13822</td>
<td>9896</td>
<td>3956</td>
</tr>
<tr>
<td>120-4</td>
<td>Subsoil Excavation</td>
<td>CY</td>
<td>14572</td>
<td>9370</td>
<td>6202</td>
</tr>
<tr>
<td>120-6</td>
<td>Embankment</td>
<td>CY</td>
<td>93775</td>
<td>66622</td>
<td>27153</td>
</tr>
<tr>
<td>121-70</td>
<td>Flowable Fill</td>
<td>CY</td>
<td>55</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>140-4</td>
<td>Type "B" Stabilization</td>
<td>SY</td>
<td>132287</td>
<td>96200</td>
<td>36087</td>
</tr>
<tr>
<td>285-706</td>
<td>Base Optional (Base Group 06)</td>
<td>SY</td>
<td>4783</td>
<td>2481</td>
<td>2302</td>
</tr>
<tr>
<td>285-709</td>
<td>Base Optional (Base Group 09)</td>
<td>SY</td>
<td>21375</td>
<td>21375</td>
<td>0</td>
</tr>
<tr>
<td>285-711</td>
<td>Base Optional (Base Group 11)</td>
<td>SY</td>
<td>62201</td>
<td>63036</td>
<td>29168</td>
</tr>
<tr>
<td>327-701</td>
<td>Milling Existing Asphalt Pavement (1" Average Depth)</td>
<td>SY</td>
<td>12870</td>
<td>9568</td>
<td>3202</td>
</tr>
<tr>
<td>331-2</td>
<td>Asphaltec Concrete Type S (Overbuild 3" Average Depth)</td>
<td>TN</td>
<td>750</td>
<td>750</td>
<td>0</td>
</tr>
<tr>
<td>331-72-10</td>
<td>Asphaltec Concrete, S-11 (1"")</td>
<td>SY</td>
<td>131229</td>
<td>98460</td>
<td>34769</td>
</tr>
<tr>
<td>331-72-14</td>
<td>Asphaltec Concrete, S-1 (1/2"")</td>
<td>SY</td>
<td>4783</td>
<td>2481</td>
<td>2302</td>
</tr>
<tr>
<td>331-72-30</td>
<td>Asphaltec Concrete, S-3 (""")</td>
<td>SY</td>
<td>13075</td>
<td>84414</td>
<td>29165</td>
</tr>
<tr>
<td>400-1-2</td>
<td>Class I Concrete (Endwalls)</td>
<td>CY</td>
<td>20</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>400-1-11</td>
<td>Class I Concrete (Retaining Walls)</td>
<td>CY</td>
<td>395</td>
<td>29</td>
<td>366</td>
</tr>
<tr>
<td>425-1-351</td>
<td>Inlets (Curb) (Type P-5) (<10)</td>
<td>EA</td>
<td>27</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>425-1-351</td>
<td>Inlets (Curb) (Type P-6) (<10)</td>
<td>EA</td>
<td>35</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>425-1-451</td>
<td>Inlets (Curb) (Type J-6) (<10)</td>
<td>EA</td>
<td>11</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>425-1-461</td>
<td>Inlets (Curb) (Type J-6) (<10)</td>
<td>EA</td>
<td>21</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>425-1-521</td>
<td>Inlets (Ditch Bottom) (Type C) (<10)</td>
<td>EA</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>425-1-447</td>
<td>Inlets (Ditch Bottom) (Type D) (<10)</td>
<td>EA</td>
<td>9</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>425-1-581</td>
<td>Inlets (Ditch Bottom) (Type H) (<10)</td>
<td>EA</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>425-2-411</td>
<td>Manholes (P7) (<10)</td>
<td>EA</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>425-2-61</td>
<td>Manholes (P8) (<10)</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>425-2-71</td>
<td>Manholes (J7) (<10)</td>
<td>EA</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>425-2-91</td>
<td>Manholes (J8) (<10)</td>
<td>EA</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>425-2-92</td>
<td>Manholes (J8) (>10)</td>
<td>EA</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>425-5</td>
<td>Manholes (Adjust)</td>
<td>EA</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>425-10</td>
<td>Yard Drain</td>
<td>EA</td>
<td>35</td>
<td>5</td>
<td>0.35</td>
</tr>
</tbody>
</table>

SUMMARY OF PAY ITEMS - STRUCTURES

<table>
<thead>
<tr>
<th>PAY ITEM</th>
<th>ITEM DESCRIPTION</th>
<th>UNITS</th>
<th>QUANTITY</th>
<th>PHASE 1</th>
<th>PHASE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-4-1</td>
<td>Class IV Concrete (Culverts) (Box Culvert)</td>
<td>CY</td>
<td>151</td>
<td>0</td>
<td>151</td>
</tr>
<tr>
<td>415-1-6</td>
<td>Reinforcing Steel (Culverts) (Box Culvert)</td>
<td>LB</td>
<td>54340</td>
<td>0</td>
<td>54340</td>
</tr>
<tr>
<td>547-70-2</td>
<td>Riprap, Fabric Formed Concrete (6") Bank Protection</td>
<td>SY</td>
<td>64</td>
<td>0</td>
<td>64</td>
</tr>
</tbody>
</table>

Phase 1

JAN 08 2008
1. ALL ELEVATIONS INCLUDING BENCHMARK ELEVATIONS ARE BASED ON NGVD DATUM 1929.
2. ALL STATIONS AND OFFSETS ARE MEASURED FROM THE CENTER LINE OF CONSTRUCTION.
3. FOR REFERENCE POINTS REFER TO RIGHT OF WAY MAP/CONTROL SURVEY.
4. ALL CONSTRUCTION ITEMS SHALL BE IN ACCORDANCE WITH THE LATEST EDITION OF THE FLORIDA DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION AND SUPPLEMENTS THEREOF.
5. ALL EXISTING PIPES ARE TO BE REMOVED UNLESS NOTED ON THE PLANS. PAYMENT TO BE INCLUDED UNDER THE CLEARING AND GRUBBING ITEM.
6. WHEN PLANS CALL FOR PIPE EXTENSION, PROVIDE A CONCRETE COLLAR AS SHOWN ON FOOT INDEX 250.
7. THE LOCATION OF PROPOSED DRAINAGE STRUCTURES IS GIVEN TO THE CENTER LINE OF THE BOTTOM STRUCTURE.
8. THE LENGTH OF PROPOSED PIPE IS APPROXIMATE AND FROM WALL TO WALL OF THE DRAINAGE STRUCTURE ROUNDED TO THE NEAREST FOOT.
9. THE PURPOSE FOR THE DITCH BOTTOM INLETS AND YARD DRAINS IS MAINLY TO COLLECT DRAINAGE FROM THE ADJACENT PROPERTIES. THE CONTRACTOR MAY ADJUST THE LOCATION OF THESE INLETS AND YARD DRAINS TO ENSURE PROPER DRAINAGE. MINOR REGRESSING WILL BE REQUIRED TO ENSURE THAT DRAINAGE IS DIRECTED TOWARD THE INLETS AND YARD DRAINS.
10. ANY PUBLIC LAND CORNER WITHIN THE LIMITS OF CONSTRUCTION IS TO BE PROTECTED. IF A CORNER MONUMENT IS IN DANGER OF BEING DESTROYED AND HAS NOT BEEN PROPERLY REFERENCED, THE PROJECT ENGINEER SHOULD NOTIFY THE DISTRICT LOCATION SURVEYOR WITHOUT DELAY BY TELEPHONE.
11. DURING CONSTRUCTION, ANY MANHOLE WITH A TOP ELEVATION OF 8" OR MORE ABOVE THE ADJACENT PAVEMENT SHALL HAVE A TEMPORARY ASPHALT APRON CONSTRUCTED AS SHOWN IN INDEX 400. WHEN THE POSTED SPEED LIMIT IS 50 MPH OR LESS AND THE CONDITION IS EXPECTED TO LAST LESS THAN 24 HOURS, THE ENGINEER MAY WAIVE THE APRON REQUIREMENT. THIS REQUIREMENT MAY NOT BE WAIVED WHEN THE ELEVATION DIFFERENCE EXCEEDS ONE INCH.
12. THE SAME CRITERIA STATED ABOVE SHALL APPLY TO DIFFERENCES IN ELEVATION AT THE BEGINNING OR END OF ANY MILLING ACTIVITIES, AS WELL AS ANY LATERAL JOINTS WITHIN THE LIMITS OF SIGNALIZED INTERSECTIONS.
13. ALL OTHER DIFFERENCES IN ELEVATION, AS WELL AS REMOVAL AND PAYMENT FOR APRONS SHALL BE PER INDEX 400.
14. ALL SIDEWALK CURB RAMPS TO COMPLY WITH STANDARDS INDEX 304, INCLUDING THE INSTALLATION OF CURB RAMP DETECTABLE WARNINGS.
15. COST OF PAVEMENT SAW CUT AT FEATHERING LOCATIONS AND PAVEMENT WIDENING IS INCIDENTAL AND IT IS INCLUDED UNDER THE MILLING AND RESURFACING ITEMS.
16. THE CONTRACTOR SHALL COORDINATE ANY CONSTRUCTION ACTIVITY OUTSIDE THE RIGHT OF WAY WITH THE PROPERTY OWNER OF THE AFFECTED PROPERTY.
17. THE CONTRACTOR SHALL PREPARE AND IMPLEMENT THE STORM WATER POLLUTION PREVENTION PLAN IN ACCORDANCE WITH THE STANDARDS SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION SECTION 104. PAYMENT TO BE INCLUDED IN THE COST OF THE MAINTENANCE OF TRAFFIC.
18. THE CONTRACTOR SHALL PREPARE AND APPLY THE NOTICE OF INTENT AND OBTAIN THE NECESSARY PERMITS FOR STORM WATER DISCHARGES FROM HIGHWAY CONSTRUCTION SITES. PAYMENT TO BE INCLUDED IN THE COST OF THE MAINTENANCE OF TRAFFIC.

SPECIAL DEWATERING NOTE

THE CONTRACTOR'S ATTENTION IS DIRECTED TO THE FACT THAT A WATER USE PERMIT FOR DEWATERING ACTIVITIES IS NOT INCLUDED IN THE PERMITS OBTAINED BY LEE COUNTY FOR THIS PROJECT. IF THE CONTRACTOR DETERMINES THAT IT IS NECESSARY TO CONDUCT DEWATERING OPERATIONS FOR ANY CONSTRUCTION OPERATION REQUIRED FOR ANY PHASE OF THIS PROJECT THEY SHALL BE RESPONSIBLE FOR OBTAINING ANY AND ALL REQUIRED PERMITS. THESE OPERATIONS MAY INCLUDE, BUT ARE NOT LIMITED TO, DRAINAGE STRUCTURES, PIPES, CULVERT EXTENSIONS, WATER UNITS, SEWER LINES, ETC. PAYMENT FOR OBTAINING THE PERMITS AND ALL DEWATERING OPERATIONS SHALL BE INCLUDED IN THE MAINTENANCE OF TRAFFIC.

ROCK NOTE

IT HAS BEEN THE EXPERIENCE OF THE DEPARTMENT, WITH PROJECTS CONSTRUCTED WITHIN THIS GENERAL GROUND AREA, THAT ALTHOUGH PRELIMINARY BORINGS DID NOT INDICATE A CONSTANT PRESENCE OF ROCK, ROCK WAS ENCOUNTERED WHILE PERFORMING UNDERGROUND INSTALLATIONS. THEREFORE, THE CONTRACTOR SHOULD CONSIDER THE INCREASED COST OF ALL UNDERGROUND WORK ACTIVITIES WHILE PREPARING HIS BID. ALL COSTS OF ROCK EXCAVATION SHALL BE INCLUDED IN THE APPROPRIATE ITEMS OF WORK CONTAINED WITHIN THE CONTRACT. NO EXTRA COMPENSATION OR TIME EXTENSION WILL BE ALLOWED FOR ADDITIONAL WORK DIRECTLY ASSOCIATED WITH THE SPLITTING, EXCAVATION, CRUSHING, DISPOSAL, REPLACEMENT OF DISPLACED VOLUME OF EXCAVATED ROCK WITH FILL MATERIAL OR SPECIAL HANDLING OF ROCK.
SUMMARY OF ROCK BAGS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>PHASE 1 QUANTITY (EA)</th>
<th>PHASE 2 QUANTITY (EA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COBBLE MELT</td>
<td>TYPE 1</td>
<td>14</td>
</tr>
<tr>
<td>MELT</td>
<td>TYPE 2</td>
<td>41</td>
</tr>
<tr>
<td>YARD DRAINS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 YARD DRAINS x 25 ROCK BAGS PER DRAIN</td>
<td>1000</td>
<td>1500</td>
</tr>
</tbody>
</table>

TOTAL | 1000 | 1500 |

SUMMARY OF GRAVITY WALL & STEEL HANDRAIL

<table>
<thead>
<tr>
<th>STA TO STA</th>
<th>CONCRETE</th>
<th>STEEL HANDRAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>175+00-0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

SUMMARY OF EARTHWORK

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PHASE 1 - CY</th>
<th>PHASE 2 - CY</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGULAR EXCAVATION</td>
<td>1850.5</td>
<td>3663.2</td>
</tr>
<tr>
<td>GRADOLUS DR</td>
<td>1390</td>
<td>1</td>
</tr>
<tr>
<td>HIGH DR</td>
<td>423</td>
<td>4</td>
</tr>
<tr>
<td>AAW BOL HD</td>
<td>293</td>
<td>293</td>
</tr>
</tbody>
</table>

TOTAL REGULAR EXCAVATION | 2768.0 | 3663.2 |

EMBANKMENT | 4666.5 | 2293.0 |

SUBSOIL EROSION | 1390 | 1 |

TOTAL EMBANKMENT | 5056.5 | 2293.0 |

SUMMARY OF QUADRILATERAL REMOVAL

<table>
<thead>
<tr>
<th>FROM STATION</th>
<th>TO STATION</th>
<th>DESCRIPTION</th>
<th>SIDE</th>
<th>MOL (IN)</th>
<th>PHASE 1</th>
<th>PHASE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>175+00-0</td>
<td>175+00-0</td>
<td>3</td>
<td>175.1</td>
<td>175.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>175+00-0</td>
<td>175+00-0</td>
<td>2</td>
<td>30.5</td>
<td>30.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL | 41 | 305.3 |

SUMMARY OF FENCING

<table>
<thead>
<tr>
<th>PARCEL</th>
<th>STA TO STA</th>
<th>STREET</th>
<th>LENGTH</th>
<th>GATE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>140+50-140+50</td>
<td>GLADOLUS CH</td>
<td>140+50-140+50</td>
<td>140+50-140+50</td>
<td>140+50-140+50</td>
</tr>
</tbody>
</table>

SUMMARY OF SoDDING

<table>
<thead>
<tr>
<th>STATION</th>
<th>SIDE</th>
<th>TYPE</th>
<th>TRIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>134+00</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

SUMMARY OF YARD DRAINS

<table>
<thead>
<tr>
<th>DRAIN</th>
<th>STATION</th>
<th>OFFSET</th>
<th>ELEVATION</th>
<th>YARD DRAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>138+50</td>
<td>ST RT</td>
<td>0.20</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>142+71</td>
<td>ST RT</td>
<td>0.20</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>144+02</td>
<td>ST RT</td>
<td>0.20</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>144+50</td>
<td>ST RT</td>
<td>0.20</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>147+02</td>
<td>ST RT</td>
<td>0.20</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>147+50</td>
<td>ST RT</td>
<td>0.20</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>148+00</td>
<td>ST RT</td>
<td>0.20</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>148+50</td>
<td>ST RT</td>
<td>0.20</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>149+00</td>
<td>ST RT</td>
<td>0.20</td>
<td>19</td>
</tr>
</tbody>
</table>

SUMMARY OF QUANTITIES

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DRAIN</th>
<th>STATION</th>
<th>OFFSET</th>
<th>ELEVATION</th>
<th>YARD DRAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>138+50</td>
<td>ST RT</td>
<td>0.20</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>142+71</td>
<td>ST RT</td>
<td>0.20</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>144+02</td>
<td>ST RT</td>
<td>0.20</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>144+50</td>
<td>ST RT</td>
<td>0.20</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>147+02</td>
<td>ST RT</td>
<td>0.20</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>147+50</td>
<td>ST RT</td>
<td>0.20</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>148+00</td>
<td>ST RT</td>
<td>0.20</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>148+50</td>
<td>ST RT</td>
<td>0.20</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>149+00</td>
<td>ST RT</td>
<td>0.20</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

Phase 1
SUMMARY OF DRAINAGE STRUCTURES

<table>
<thead>
<tr>
<th>NO.</th>
<th>LOCATION</th>
<th>DESCRIPTION</th>
<th>PFAC</th>
<th>CONCRETE PIPE</th>
<th>STORM SEWER SYSTEM</th>
<th>HOLLOWZONES</th>
<th>SHOULDER END</th>
<th>CLASS</th>
<th>CONC</th>
<th>RNAK</th>
<th>SHAPE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>209</td>
<td>114-50</td>
<td>10% S</td>
<td>GLADIOLUS</td>
<td>INLET PIPE</td>
<td>45</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>210</td>
<td>114-50</td>
<td>10% S</td>
<td>GLADIOLUS</td>
<td>MANHOLE PIPE</td>
<td>35</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>114-50</td>
<td>10% S</td>
<td>GLADIOLUS</td>
<td>INLET PIPE</td>
<td>47</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>114-50</td>
<td>10% S</td>
<td>GLADIOLUS</td>
<td>MANHOLE PIPE</td>
<td>250</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>114-50</td>
<td>10% S</td>
<td>GLADIOLUS</td>
<td>INLET PIPE</td>
<td>96</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>114-50</td>
<td>10% S</td>
<td>GLADIOLUS</td>
<td>MANHOLE PIPE</td>
<td>257</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>114-50</td>
<td>10% S</td>
<td>GLADIOLUS</td>
<td>INLET PIPE</td>
<td>96</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>114-50</td>
<td>10% S</td>
<td>GLADIOLUS</td>
<td>MANHOLE PIPE</td>
<td>35</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>114-50</td>
<td>10% S</td>
<td>GLADIOLUS</td>
<td>INLET PIPE</td>
<td>52</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>114-50</td>
<td>10% S</td>
<td>GLADIOLUS</td>
<td>MANHOLE PIPE</td>
<td>36</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>114-50</td>
<td>10% S</td>
<td>GLADIOLUS</td>
<td>INLET PIPE</td>
<td>500</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>114-50</td>
<td>10% S</td>
<td>GLADIOLUS</td>
<td>MANHOLE PIPE</td>
<td>51</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>114-50</td>
<td>10% S</td>
<td>GLADIOLUS</td>
<td>INLET PIPE</td>
<td>45</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>114-50</td>
<td>10% S</td>
<td>GLADIOLUS</td>
<td>MANHOLE PIPE</td>
<td>250</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>114-50</td>
<td>10% S</td>
<td>GLADIOLUS</td>
<td>INLET PIPE</td>
<td>100</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>114-50</td>
<td>10% S</td>
<td>GLADIOLUS</td>
<td>MANHOLE PIPE</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Phases:
- Phase 1

Date: January 8, 2009

CONSTRUCTION: Construct 24" HDPE PIPE @ END OF PFAC

DOUBLE IN USE: CONSTRUCT 24" HDPE PIPE, CONTROL STRUCTURE, INSTALL TOP CONC COLLABOR

ADJUST INLET TOP TYPE 2:

NOTE: MANHOLE TOP

ADJUST INLET TOP TYPE 2:

NOTE: GLADIOLUS PRECAST TEE CONTROL STRUCTURE FOR GUTTERS
SUMMARY OF DRAINAGE STRUCTURES

<table>
<thead>
<tr>
<th>PHASE #</th>
<th>LOCATION</th>
<th>DESCRIPTION</th>
<th>STORM SEWER</th>
<th>CULVERTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>100</td>
<td>GLADIOLUS</td>
<td>DIRT PIPE</td>
<td>DIRT PIPE</td>
</tr>
<tr>
<td>02</td>
<td>200</td>
<td>GLADIOLUS</td>
<td>DIRT PIPE</td>
<td>DIRT PIPE</td>
</tr>
<tr>
<td>03</td>
<td>300</td>
<td>GLADIOLUS</td>
<td>DIRT PIPE</td>
<td>DIRT PIPE</td>
</tr>
<tr>
<td>04</td>
<td>400</td>
<td>GLADIOLUS</td>
<td>DIRT PIPE</td>
<td>DIRT PIPE</td>
</tr>
<tr>
<td>05</td>
<td>500</td>
<td>GLADIOLUS</td>
<td>DIRT PIPE</td>
<td>DIRT PIPE</td>
</tr>
<tr>
<td>06</td>
<td>600</td>
<td>GLADIOLUS</td>
<td>DIRT PIPE</td>
<td>DIRT PIPE</td>
</tr>
</tbody>
</table>

REMARKS
- CONSTRUCT NEW CONCRETE CURB AND GUTTER.
- EXISTING LID AND CONCRETE STRUCTURE REMAIN.
- COAST TO SEA CCTV INSPECTED.

JAN 08 2008

GLADIOLUS DRIVE WIDENING

PINE RIDGE ROAD TO WINKLER ROAD

SUMMARY OF DRAINAGE STRUCTURES
GRAVITY WALL DETAILS

1. The purpose of the gravity walls in this project is to avoid permanent slopes outside the existing right of way.

2. Property owners have the option to avoid the construction of gravity walls if they can grant voluntary slope easements to the county.

3. It is expected that before construction begins, property owners will grant slope easements to the county. If so, the contractor shall coordinate with the engineer and the property owner to construct earthen slopes in lieu of gravity walls.

4. Refer to foot index 520 for all gravity wall construction.

GRAVITY WALL NOTES

HEIGHT

DISTANCE

STATION FROM TO OFFSET AVERAGE

GLADALUS 144+30 145+20 LEFT 3' 110'
GLADALUS 146+53 147+77.5 RIGHT 3' 42.5'
GLADALUS 153+34 153+62 LEFT 2' 112'
GLADALUS 153+81.2 153+38.6 RIGHT 3' 149.6'
GLADALUS 153+60.8 154+20.7 RIGHT 2' 70.7'
GLADALUS 154+15.8 154+71.8 LEFT 3.5' 104.5'
GLADALUS 154+27.3 155+190 RIGHT 3' 77.7'
GLADALUS 154+35 154+65 LEFT 2.5' 30.8'
GLADALUS 154+88.2 154+45.7 LEFT 3.5' 119.8'

JAN 08 2008

Phase 1
<table>
<thead>
<tr>
<th>STRATA NO.</th>
<th>MAX. LBR.</th>
<th>MOISTURE CONTENT</th>
<th>% ORGANIC</th>
<th>#100 MESH</th>
<th>#40 MESH</th>
<th>#200 MESH</th>
<th>#400 MESH</th>
<th>#1000 MESH</th>
<th>FEAT. GROUP</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>13-20</td>
<td></td>
<td>100</td>
<td>90-100</td>
<td>88-91</td>
<td>23-36</td>
<td>2-3</td>
<td>A-3</td>
<td>Fine SAND with varying amounts of silt.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>9-26</td>
<td></td>
<td>81-100</td>
<td>81-98</td>
<td>88-91</td>
<td>22-44</td>
<td>5-10</td>
<td>A-3</td>
<td>Fine SAND with silt, rock & shell fragments.</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rock</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fine SAND with fibrous peat & organic.</td>
</tr>
</tbody>
</table>

1) STRATA BOUNDARIES ARE APPROXIMATE. MAKE FINAL CHECK AFTER GRAVING.
2) WATER TABLE ENCOUNTERED IN ALL STRATA.
3) THE MATERIAL FROM STRATA NUMBERS 1 AND 2 APPEARS SATISFACTORY FOR USE IN THE EMBANKMENT WHEN UTILIZED IN ACCORDANCE WITH INDEX 550. SOME OVERTIZED ROCK PARTICLES MAY BE PRESENT IN THE MATERIAL EXCAVATED FROM THESE STRATA, AND WILL HAVE TO BE REMOVED DURING PLACEMENT.
4) THE MATERIAL FROM STRATUM NUMBER 3 APPEARS SATISFACTORY FOR USE IN THE EMBANKMENT WHEN UTILIZED IN ACCORDANCE WITH INDEX 550. HOWEVER, THIS MATERIAL IS LIKELY TO RETAIN EXCESS MOISTURE AND MAY BE DIFFICULT TO DRY AND COMPACT. IT SHOULD BE USED IN THE EMBANKMENT ABOVE WATER LEVEL EXISTING AT THE TIME OF CONSTRUCTION.
5) THE MATERIAL FROM STRATUM NUMBER 4 IS CLAYEY, A-2-3 MATERIAL AND SHALL BE USED IN ACCORDANCE WITH INDEX 550.
6) THE MATERIAL FROM STRATUM NUMBER 5 IS A-B MATERIAL, AND SHALL BE REMOVED THROUGH THE LIMITS OF THE ROADWAY, SHOULDER AND SIDEWALK CONSTRUCTION.
AB-38
LOCATION: STA 170+00
30 FT. NORTH FROM CENTERLINE

0

3.25 ft
3/29/95

Grey and brown, fine sand w/ shell and shell fragments (A-3)(1)

[5] REFUSAL, BORING TERMINATED AT 4 FT.

AB-37
LOCATION: STA 170+05
47 FT. SOUTH FROM CENTERLINE

0

10.4 ft
3/29/95

Dark grey and brown, fine sand w/ shell and shell fragments (A-2)(2)

[5] REFUSAL, BORING TERMINATED AT 4 FT.

AB-38
LOCATION: STA 172+00
28 FT. NORTH FROM CENTERLINE

0

1.35 ft
3/29/95

Dark grey and brown, fine sand w/ shell and shell fragments (A-2)(3)

[5] REFUSAL, BORING TERMINATED AT 4 FT.

AB-50
LOCATION: STA 173+00
35 FT. SOUTH FROM CENTERLINE

0

2.23 ft
3/29/95

Brown, silty, fine sand (A-2)(6)

[5] REFUSAL, BORING TERMINATED AT 4 FT.

AB-40
LOCATION: STA 174+00
28 FT. NORTH FROM CENTERLINE

0

4.7 ft
3/29/95

Brown, silty, fine sand (A-2)(6)

[5] REFUSAL, BORING TERMINATED AT 4 FT.

AB-41
LOCATION: STA 175+00
28 FT. SOUTH FROM CENTERLINE

0

10.4 ft
3/29/95

Brown, silty, fine sand (A-2)(6)

[5] REFUSAL, BORING TERMINATED AT 4 FT.

AB-42
LOCATION: STA 176+00
32 FT. NORTH FROM CENTERLINE

0

1.5 ft
3/29/95

Dark grey and brown, silty, fine sand (A-2)(6)

[5] REFUSAL, BORING TERMINATED AT 4 FT.

AB-43
LOCATION: STA 177+00
25 FT. SOUTH FROM CENTERLINE

0

5.1 ft
3/29/95

Dark brown, fine sand (A-3)(1)

[5] REFUSAL, BORING TERMINATED AT 5 FT.

AB-44
LOCATION: STA 178+00
45 FT. NORTH FROM CENTERLINE

0

6.9 ft
3/29/95

Dark grey and brown, fine sand (A-3)(2)

[5] REFUSAL, BORING TERMINATED AT 3.5 FT.

AB-45
LOCATION: STA 179+00
28 FT. SOUTH FROM CENTERLINE

0

1.5 ft
3/29/95

Dark brown, fine sand (A-3)(1)

[5] REFUSAL, BORING TERMINATED AT 4 FT.

AB-46
LOCATION: STA 180+00
38 FT. NORTH FROM CENTERLINE

0

10.4 ft
3/29/95

Dark grey and brown, fine sand w/ shell and shell fragments (A-3)(2)

[5] REFUSAL, BORING TERMINATED AT 2.8 FT.

AB-47
LOCATION: STA 181+00
27 FT. SOUTH FROM CENTERLINE

0

1.5 ft
3/29/95

Dark grey and brown, fine sand w/ shell and shell fragments (A-3)(2)

[5] REFUSAL, BORING TERMINATED AT 1.0 FT.

KEY TO BORING LOGS

- SHELL
- CLAY
- Silt/silty CLAY
- ROCK
- SAND
- Silty SAND
- SAND with clay
- SAND with silt
- Clayey SAND
- CAO:
- STANDARD PENETRATION RESISTANCE IN BLOWS PER FOOT (IF SPORN - AS T D 1038)

Note: The above information is based on visual observation and laboratory tests.

-200 PERCENT PASSING NO. 200 U.S. Standard sieve

- N:
- NATURAL MOISTURE CONTENT
- LL:
- LIQUID LIMIT
- PI:
- PLASTICITY INDEX

G:
- GROUNDWATER TABLE DEPTH/DATE

- CE:
- ESTIMATED SEASONAL HIGH GROUNDWATER TABLE DEPTH

- G.E.:
- GROUNDWATER TABLE NOT ENCOUNTERED

NOTES

1. Subsoil variations between borings should be anticipated as indicated in Section 2-4 of the Standard Specifications.
2. Boring locations are approximate (estimated from plans provided by client).
GENERAL NOTES:
2. THE TRAFFIC CONTROL PLANS ARE INTENDED AS A GUIDE. THE CONTRACTOR HAS THE OPTION TO SUBMIT ALTERNATIVE PLANS FOR REVIEW AND APPROVAL BY THE COUNTY DEPARTMENT OF TRANSPORTATION FOR IMPLEMENTATION.
3. THE CONTRACTOR SHALL BE RESPONSIBLE FOR MAINTAINING SAFE AND EFFICIENT OPERATION OF ALL SIGNALS AND THE SIGNALIZED MOVEMENT OF TRAFFIC WITHIN THE PROJECT. THIS WILL INCLUDE ALLOYING SIGNAL HEADS AND DETERMINING TRAFFIC SIGNAL TIMES DURING EACH CONSTRUCTION PHASE.
4. THE CONTRACTOR SHALL MAINTAIN ACCESS FOR BUSINESS, PEDESTRIANS, PEDESTRIAN CROSSWALKS, ADJACENT PROPERTY AND BUS OPERATIONS DURING CONSTRUCTION.
5. VARIABLE MESSAGE SIGNS ARE TO BE PLACED AT THE BEGINNING AND END OF PROJECT OR AT THE DIRECTION OF THE ENGINEER.

PERMITTED HOURS FOR LANE CLOSURE:
MAINTAIN ONE LANE EACH DIRECTION AT ALL TIMES.
GLADOLUS DRIVE BETWEEN 10 AM AND 4 PM.
BASS ROAD AND A&W BULB ROAD BETWEEN 10 AM AND 6 PM.
HAZARD DRIVE MAY BE CLOSED FOR THE CONSTRUCTION OF THE STORM SEWER AND THE NEW TRAFFIC CONTROL DEVICES.

PHASE NOTES:
PRIOR TO IMPLEMENTING THE PROPOSED CONSTRUCTION PHASES, THE CONTRACTOR SHALL PERFORM ALL WORK THAT DOES NOT REQUIRE TRAFFIC FLOW INTERRUPTION ON GLADOLUS AND BASS ROADS. THIS WORK INCLUDES, BUT IS NOT LIMITED TO, THE FOLLOWING:
1. CONSTRUCTION OF ALL THE CONTROL STRUCTURES.
2. PROPOSED DRAINAGE AND PAVEMENT ALONG HAZARD DRIVE, DR. AND A&W BULB RD.

STAGE 1:
1. WHILE MAINTAINING EXISTING TRAFFIC CONDITIONS AND BY CLOSING LANE DURING NON-PEAK DAYLIGHT HOURS, PREPARE EXISTING ROAD FOR STAGE 1 TRAFFIC SHIFT.
 A. TEMPORARY PAVEMENT
 B. PAVEMENT OVERBUILT TO REDIRECT DRAINAGE AWAY FROM THE CONSTRUCTION ZONE
 C. TEMPORARY MARKING (PAINT), BARRICADES AND OTHER TRAFFIC CONTROL DEVICES.
 2. SHIFT TRAFFIC AS DEPICTED ON STAGE 1 PLAN AND TYPICAL SECTIONS.
 3. CONSTRUCT PROPOSED ITEMS WITHIN THE WORK ZONE.
 4. PREPARE ROAD FOR STAGE 2 TRAFFIC SHIFT.

STAGE 2:
1. SHIFT TRAFFIC AS DEPICTED ON STAGE 2 PLAN AND TYPICAL SECTIONS.
2. CONSTRUCT PROPOSED ITEMS WITHIN THE WORK ZONE.
3. PREPARE ROAD FOR STAGE 3 TRAFFIC SHIFT.

STAGE 3:
1. SHIFT TRAFFIC AS DEPICTED ON STAGE 3 TYPICAL SECTIONS.
2. CONSTRUCT MEDIAN AND OTHER ITEMS NOT CONSTRUCTED IN STAGES 1 AND 2.

JAN 08 2008

Phase 1

GLADIOLUS DRIVE WIDENING
PINE RIDGE ROAD TO WINKLER ROAD
TRAFFIC CONTROL TYPICAL SECTIONS — STAGE 1

PUBLIC WORKS
LEE COUNTY SOUTHWEST FLORIDA
DEPARTMENT OF TRANSPORTATION

Gladolus Dr. Phase 1 — Stage 1
A&W Bulb Rd. to Winkler Rd.

Bass Rd. Phase 1 — Stage 1

nic

Figures Drawn by: Robert Morrell

Drawn by Mary T. Morrell

Check by Robert Morrell

Drawn by: Mary T. Morrell

Check by: Mary T. Morrell

Date: 1/9/2009

SHEET 167 of 207 SHEETS

Page 1224.0x792.0

Image 0x0 to 1224x792.
GLADIOUS DR. PHASE 1 - STAGE 2
A&W BULB RD. TO WINKLER RD.

GLADIOUS DR. PHASE 2 - STAGE 2
PINE RIDGE RD. TO A&W BULB RD.

BASS RD. PHASE 1 - STAGE 2

JAN 08 2008

Phase 1
The following narrative of the Stormwater Pollution Prevention Plan contains references to the Standard Specifications for Road and Bridge Construction, the Design Standards, and other sheets of these construction plans. The first sheet of the construction plans (called the Key Sheet) contains an index to the other sheets. The complete Stormwater Pollution Prevention Plan includes several items: this narrative description, the documents referenced in this narrative, the contractor's approved Erosion Control Plan required by the Specification Section 104, and reports of inspections made during construction.

1.0 SITE DESCRIPTION:

1a. Nature of Construction Activity

The project is the reconstruction of CR 865 (Gladiolus Drive) and Bass Road to major urban roadways. This involves construction roadway surface, curb and gutter, sidewalk, underground storm sewer systems, and stormwater management facilities. The project extends from Pine Ridge Road to Winkler Road on Gladiolus Drive, and from Health Park to Gladiolus Drive on Bass Road, a distance of approximately 3 miles.

1b. Sequence of Major Soil Disturbing Activities:

In the Section 104 Erosion Control Plan, the contractor shall provide a detailed sequence of construction for all construction activities. The contractor shall follow the sequence of major activities described below, unless the contractor proposes a different sequence that is equal or better at controlling erosion and trapping sediment and is approved by the Engineer.

For each construction phase, install perimeter controls after clearing and grubbing necessary for installation of controls but before beginning other work for the construction phase. Remove perimeter controls only after all upstream areas are stabilized.

1. Clearing and grubbing, earthwork, and storm sewer construction for the outfall from the ponds.
2. Clearing and grubbing, earthwork for pond construction.
3. Storm sewer construction. Construct the storm drain pipe in the upstream direction.
4. Earthwork associated with roadway and construction of gravity wall, curb, subgrade, base, pavement and sidewalk.

1c. Area Estimates:

Total site area (on and offsite): 89.53 acres.
Total area to be disturbed: 52 acres

1d. Runoff Data:

Runoff Data: Before CN = 93
After CN = 93

Runoff Coefficients: Before:

Soils Data: The results of the soil borings along the roadway are shown in the Roadway Soil Survey Sheet(s). The results of soil borings are shown in a separate soils report and will be included with the specifications package. In general, the soils are clayey sands.

Outfall Information: There are 5 outfalls.

#1 Description: A drop structure connected to former IOD Canal C-7 to Big Skew Canal.
Location: Existing Lake in Harlem Heights
Drainage Area = 49.20 Acres
Receiving Water Body: Deep Lagoon

#2 Description: A drop structure connected to former IOD Canal C-7 to Big Skew Canal.
Location: Proposed linear detention west of A&W Bulb Road.
Drainage Area = 9.32 Acres
Receiving Water Body: Deep Lagoon

#3 Description: A drop structure connected to a wetland preserve to Big Skew Canal.
Location: Existing Lake in Gladiolus Preserve. See drainage map.
Drainage Area = 14.29 Acres
Receiving Water Body: Deep Lagoon

#4 Description: A drop structure connected to former IOD Canal B-1 to Hendry Creek.
Location: Existing lake in Laguna Lakes Subdivision. See drainage map.
Drainage Area = 9.06 Acres
Receiving Water Body: Hendry Creek

#5 Description: A drop structure connected to former IOD Canal B-1 to Hendry Creek.
Location: An existing detention pond near the existing F&I easement.
Drainage Area = 7.64 Acres
Receiving Water Body: Hendry Creek

1e. Site Map:

The construction plans are being used as the site maps. The location of the required information is described below. The sheet numbers for the plan sheets referenced are identified on the Key Sheet of these construction plans.

* Drainage Patterns: The drainage basin divides and flow directions are shown on the Drainage Maps.

* Approximate Slopes: The slopes of the site can be seen in the Cross Section Sheets and the Plan and Profile Sheets.

* Areas of Soil Disturbance: The areas to be disturbed are indicated on the Plan & Profile Sheets, the cross Section Sheets. Any areas where permanent features are shown to be constructed above or below ground will be disturbed.

* Areas Not To Be Disturbed: Essentially the whole project will be disturbed during construction.

* Locations of Temporary Controls: These are shown on the Erosion Control Sheets.

* Locations of Permanent Controls: The stormwater ponds are the primary permanent stormwater management controls. These are shown on the Drainage Maps.

* Areas To Be Stabilized: Temporary stabilization practices are shown in the same location as the temporary controls mentioned above. Permanent stabilization is shown on the Typical Section Sheets and the Plan & Profile Sheets.

* Surfaces Waters: Former IOD Canals C-2, C-5, C-7 and B-1. Also the Big Skew Canal. These are all shown on the Drainage Maps.

* Discharge Points To Surface Waters: the drainage Map shows the discharge points to all existing surface water bodies.

1f. Receiving Waters:

See Item 1.d for the outfall locations and receiving water names. There are wetland areas on the project site. Impacts are limited to the areas described in the approved permits for the project.

IAN 08 2008

[Signature]

Phase 1
2.0 CONTROLS:
2.a. Erosion and Sediment Controls:

In the Section 104 Erosion Control Plan, the contractor shall describe the proposed stabilization and structural practices based on the contractor's proposed Traffic control Plan. The following recommended guidelines are based on the Traffic Control Plan (TCP) outlined in the construction plans. Where following the Traffic Control Plan (TCP) outlined in these construction plans, the contractor may choose to accept the following guidelines or modify the plan to adapt to seasonal variations, changes in construction activities, and for better practices.

For each construction phase, install perimeter controls after clearing and grubbing necessary for installation of controls but before beginning other work for the construction phase. Remove perimeter controls only after all upstream areas are stabilized.

Phase I of Traffic Control Plans.
Please refer to Traffic Control Plans for sequence of construction.

2.0.1 Stabilization Practices:
In the Section 104 Erosion Control Plan, the contractor shall describe the stabilization practices proposed to control erosion. The contractor shall initiate all stabilization measures as soon as practical, but in no case more than 14 days, in portions of the site where construction activities have temporarily or permanently ceased. The stabilization practices shall include at least the following, unless otherwise approved by the Engineer.

Temporary:
- Artificial coverings in accordance with Specification Section 104.
- Seed and mulch and sod in accordance with Specification Section 104.

Permanent:
- Asphalt or concrete surface.
- Sod in accordance with Specification Section 575.

2.0.2 Structural Practices:
In the Section 104 Erosion control Plan, the contractor shall describe the proposed structural practices to control or trap sediment and otherwise prevent the discharge of pollutants from exposed areas of the site. Sediment controls shall be in place before disturbing soil upstream of the control. The structural practices shall include at least the following, unless otherwise approved by the Engineer.

Temporary:
- Silt fence in accordance with Design Standard 102 and Specification Section 104.
- Bale hay or straw in accordance with Design Standard 102 and Specification Section 104.
- Sandbags to control erosion and trap silt.

- Inlet protection in accordance with Design Standard 102 and special details shown in the TCP.
- Sediment Basin. The permanent stormwater ponds will be temporarily modified according to the details in the TCP.
 - Permanent:
 - Stormwater ponds.
 - Sod.

2.b Stormwater Management:
Several storm sewer systems will be constructed to convey runoff to five (5) stormwater retention/detention ponds. The facilities have been permitted by the Florida Department of Environmental Protection (FDEP) and comply with applicable design standards.

2.c Other Controls:

2.c.1 Waste Disposal:
In the Section 104 Erosion control Plan, the contractor shall describe the proposed methods to prevent the discharge of solid materials, including building materials, to waters of the United States. The proposed methods shall include at least the following, unless otherwise approved by the Engineer.

- Providing litter control and collection within the project during construction activities.
- Disposing of all fertilizer or other chemical containers according to EPA's standard practices as detailed by the manufacturer.
- Disposing of solid materials including building and construction materials off the project site but not in surface waters or wetlands.
2.c.2 Off-Site Vehicle Tracking & Dust Control:

In the Section 104 Erosion Control Plan, the contractor shall describe the proposed methods for minimizing offsite vehicle tracking of sediments and generating dust. The proposed methods shall include at least the following, unless otherwise approved by the Engineer.

- Covering loaded haul trucks with tarpaulins.
- Removing excess dirt from roads daily.
- Stabilizing construction entrances according to Design Standard 106.
- Using roadway sweepers during dust generating activities such as excavation and milling operations.

2.c.3 State and Local Regulations For Waste Disposal, Sanitary Sewer or Septic Tank Regulations:

In the Section 104 Erosion control Plan, the contractor shall describe the proposed procedures to comply with applicable state and local regulations for waste disposal and sanitary sewer or septic systems.

2.c.4 Fertilizers and Pesticides:

In the Section 104 Erosion Control Plan, the contractor shall describe the procedures for applying fertilizers and pesticides. The proposed procedures shall comply with applicable subsections of either Section 570 or 571 of the specifications.

2.c.5 Toxic Substances:

In the Section 104 Erosion Control Plan, the contractor shall provide a list of toxic substances that are likely to be used on the job and provide a plan addressing the generation, application, migration, storage and disposal of these substances.

2.d.4 Approved State and Local Plans and Permits:

- FDEP Rule Chapter 62-25 F.A.C.
- Lee County Environmental Management Ordinance Number

3.0 MAINTENANCE:

In the Section 104 Erosion Control Plan, the contractor shall provide a plan for maintaining all erosion and sediment controls throughout construction. The maintenance plan shall at a minimum comply with the following.

- Silt Fence: Maintain per Section 104. The contractor should anticipate replacing silt fence on 12 month intervals.
- Bale Hay or Straw: Remove sediment when it reaches 1 height of bales or when water ponds in unacceptable amounts or areas. The contractor should anticipate replacing straw bales on 3-month intervals.

4.0 Inspections:

Qualified personnel shall inspect the following items at least once every seven calendar days and within 24 hours of the end of a storm that is 0.25 inches or greater. To comply, the contractor shall install and maintain gages and record the daily rainfall. Where sites have been permanently stabilized inspections shall be conducted at least once each month. The contractor shall also inspect that controls installed in the field agree with the latest Stormwater Pollution Prevention Plan.

- Points of discharge to waters of the United States.
- Points of discharge to municipal separate storm sewer systems.

- Disturbed areas of the site that have not been finally stabilized.
- Areas used for storage of materials that are exposed to precipitation.
- Structural controls.
- Stormwater management systems.
- Locations where vehicles enter or exit the site.

The contractor shall initiate repairs within 24 hours of inspections that indicate items are not in good working order.

If inspections indicate that the installed stabilization and structural practices are not sufficient to minimize erosion, retain sediment and prevent discharging pollutants, the contractor shall provide additional measures, as approved by the Engineer.

5.0 NON-STORMWATER DISCHARGES:

In the Section 104 Erosion Control Plan, the contractor shall identify all anticipated non-stormwater discharges (except flows from fire fighting activities). The contractor shall describe the proposed measures to prevent pollution of these non-stormwater discharges. If the contractor encounters contaminated soil or ground water, contact the Project Engineer.